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The evolution of competing species of terrestrial
salamanders: niche partitioning or interference?

NELSON G. HAIRSTON Sr, KIISA C. NISHIKAWA* and SARAH L. STENHOUSE*
Department of Biology, University of North Carolina, Chapel Hill, NC 27514, USA

Summary

One of the central assumptions of evolutionary ecology is that interspecific competition is a potent
evolutionary force acting on coexisting species. There are few animal species that provide an opportunity for
an experimental analysis of the evolutionary consequences of the phenomenon. We have taken advantage of
the fact that two species of terrestrial salamander, Plethodon glutinosus and P. jordani, have different
altitudinal distributions on two mountain ranges in North Carolina. Field removal experiments showed that
interspecific competition was much stronger in the Great Smoky Mountains than in the Balsam Mountains,
and transplant experiments between the two mountain ranges showed that neither species from the Balsam
Mountains had a measurable effect on its congener in the Smokies, although both species from the Smokies
had strong negative effects on the Balsam congeners. Other experiments were conducted on the behavioral
and ecological changes that have (or have not) evolved in the two areas. Our studies show that increased
interspecific interference was the major evolutionary response of these large Plethodon species to interspeci-
fic competition, and that partitioning of food or microhabitat was not involved.

Keywords: Aggression; altitudinal distribution; food interference; North Carolina; Plethodon; salamander.

Introduction

Theoretical development in evolutionary ecology has been based on the assumption that compe-
tition between species is a major factor. This assumption has received some confirmation from
the large number of field experiments which have shown that competition is common in nature
(Schoener, 1983; Connell, 1983). It is not, however, of universal occurrence. Some experimental
tests for competition have yielded negative results (e.g. Hairston, 1981), and predation has been
shown to be important in a number of communities (Paine, 1966; Connell, 1975; Hairston, 1986).

Several mathematical ecologists have concluded that the evolutionary consequence of inter-
specific competition is the ladaptation of competing species to different but overlapping parts of
the resource for which thej' are assumed to compete (MacArthur and Levins, 1967; MacArthur,
1972; Roughgarden, 1976; Lawlor and Maynard Smith, 1976; Pianka, 1976). Because one can
always find ecological differences between coexisting species (Wiens, 1977), the mathematical
theories have been widely regarded as confirmed. Despite this apparently neat package of theory,
observation and experiment, there has been an alternative hypothesis in the literature for 13
years. In 1974, D. E. Gill proposed that rather than the partitioning of resources, a likely
outcome of interspecific competition is the evolution of interference mechanisms, by which one
species is able to reduce the ability of a competing species to obtain a resource, or to survive or
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reproduce. Gill’s example was the use of symbiotic microorganisms by Paramecium to produce
substances lethal to potential competitors, and there are other good examples, such as the
production of antibiotics by the fungi that compete with bacteria in decomposition. The ecologi-
cal effect of interference, as opposed to exploitation, has been considered by modelers (Case and
Gilpin, 1974; Schoener, 1976, 1978), but the relative importance of the two in evolutionary terms
has not received mathematical attention.

We have taken advantage of a unique opportunity to study the evolutionary consequences of
interspecific competition in two species of terrestrial salamander, Plethodon jordani and P.
glutinosus. These species are unique in exhibiting geographic variation in the intensity of
interspecific competition. Our studies describe the observational and experimental evidence for
the difference in strength of competition on different mountain ranges, the use of food and
microhabitat by the two species, and test alternative hypotheses for the behavioral basis of the
difference.

Plethodon jordani is a salamander species endemic to the southern Appalachians, with many
populations isolated or partially isolated on different mountain ranges (Dunn, 1926; Hairston,
1951; Highton and Henry, 1970). Some of these forms differ strikingly in color pattern. For
example, P. jordani in the Great Smoky Mountains of North Carolina and Tennessee have red
cheeks, while those in the Balsam Mountains of North Carolina have grey cheeks. The two
populations intergrade freely where the two mountain ranges come together.

Plethodon glutinosus consists of regionally differing populations occurring at lower elevations
throughout the eastern United States (Highton, 1972, 1983). The form in that part of the
southern Appalachians concerned in these studies has been called P. teyahallee by Highton
(1983), but the evidence for its specific distinctness from most surrounding forms is lacking, and
we continue to use the name glutinosus. All members of the genus Plethodon are completely
terrestrial, the eggs being laid underground, with metamorphosis taking place before hatching.
Thus, there is no annual migration, and a complex life cycle is lacking.

Altitude distributions and field experiments

The altitudinal distribution of the two species differs among mountain ranges (Hairston, 1951).
Plethodon jordani, a montane species, is found to the tops of all of the mountains, and P.
glutinosus is found at lower elevations. In the Black Mountains of North Carolina and in the
Great Smoky Mountains of North Carolina and Tennessee, the high-altitude P. jordani and the
low-altitude P. glutinosus overlap by no more than 70-170 m vertically. The actual elevation of
the overlap depends on the direction in which the slope faces — about 900 m on north-facing
slopes and about 1500 m on south-facing ones. This distribution pattern of altitudinal replace-
ment was originally interpreted as indicating strong competition between the species, as there is
no discernable break in soil type or vegetation, and the climate changes gradually with altitude
(Hairston, 1949).

In the Balsam Mountains of North Carolina, which are located between the Blacks and the
Smokies, the altitudinal overlap between the two species is at least 1350 m (Hairston, 1951; Table
1). Although the P. jordani in the Smokies and Balsams differ in color and in some morphological
characters (Hairston and Pope, 1948), the populations are distributed continuously, and the
characters intergrade freely where the mountain ranges join. The discovery of this distribution
pattern of broad altitudinal sympatry in the Balsams meant that, if the original interpretation of
intense competition in areas of narrow altitudinal overlap was correct, the intensity of competi-

tion must differ among mountain ranges, being much stronger where the overlap was narrow than
where it was wide.
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Table 1. Altitudinal transects in the Great Smoky Mountains and the Balsam Mountains, showing the
number of specimens of Plethodon observed at each elevation. Asterisks indicate regular stops on class field
trips.

Great Smoky Mountains Balsam Mountains

Elevation No. No. No. hybrids  Elevation No. No.
P. jordani P. glutinosus P. jordani P. glutinosus

(m) (m)
*1622 241 0 0 1676 26 0
1586 29 0 0 1615 7 1
*1512 268 0 0 1525 16 7
*1463 330 0 0 1385 8 2
*1433 327 1 0 1240 11 6
*1406 210 70 4 1155 6 4
1372 6 3 0 1100 5 8
*1348 0 192 0 1051 3182 392
1311 0 23 0 1000 13 1
1265 1 37 0 915 6 2
1204 0 36 0 833 8 2
960 0 15 0 750 3 0
560 10 0
400 9 2
250 3 8

An experimental test of the difference in intensity of competition was proposed, and the design
was published in detail, along with the interpretations of different possible outcomes (Hairston,
1973). Briefly, it was proposed to remove each species from different experimental plots at the
same altitude in both the Great Smoky Mountains and the Balsam Mountains. If the explanations
that had been offered for the distributions were correct, each species should respond more
strongly and more quickly to the removal of the other in the Smokies than they would in the
Balsams, because of the hypothesized greater importance of competition in the former location.

The experiment ran for five years, the minimum duration of a generation of P. glutinosus
(Highton, 1962). The results were similar to those expected under the hypothesis of different
levels of competition in the two mountain ranges (Hairston, 1980a). On plots from which P.
jordani was removed in the Smokies, mean numbers of P. glutinosus rose significantly above
mean numbers on control plots during the third, fourth, and fifth years of the experiment (Fig. 1).
In the Balsams, the same response was obtained, but only from the end of the fourth year
through to the fifth (Fig. 2). Removal of P. glutinosus resulted in non-significant increases in the
populations of P. jordani, but produced a marked and significant increase in the proportion of the
two youngest age classes of P. jordani in the Smokies, and a statistically significant, but less
impressive increase in these young animals in the Balsams. Thus, although interspecific competi-
tion was confirmed in both areas, it was detected earlier in the Smokies, and was more intense
there, as expected from the altitudinal distributions.

The numerical results were used to calculate the coefficients of competition and the carrying
capacities of the environments, assuming that the familiar Lotka—Volterra equations for inter-
specific competition were valid. The results are shown in Table 2. Each coefficient, alpha,
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Figure 1. The effect of removing Plethodon jordani on the mean number of Plethodon glutinosus per plot
search in the Great Smoky Mountains. (From ‘The experimental test of an analysis of field distributions’ by
N. G. Hairston, Ecology 61, 817-26. © 1980 Ecological Society of America. Reprinted by permission.)
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Figure 2. The effect of removing Plethodon jordani on the mean number of Plethodon glutinosus per plot
search in the Balsam Mountains. (From Hairston, as Fig. 1)

Table 2. Coefficients of competition between Plethodon jordani and Plethodon glutinosus in two mountain
ranges in North Carolina. Their calculation depends on the assumptions that populations are in equilibrium
and that there is a linear relationship between the abundance of one competitor and the negative effect on
the population of the other. Thus, the reduction of an average of 18 P. jordani resulted in an average
increase of 3.52 P. glutinosus. The effect per individual P. jordani, 3.52/18, or 0.19, is the competition
coefficient o, ;; Hairston (1983b) provides evidence of an equilibrium population of P. jordani. The same
assumptions are necessary for the calculation of the carrying capacities (K) of the respective environments.

Great Smoky Mountains
(altitudinal overlap narrow)

Balsam Mountains
(altitudinal overlap wide)

Competition coefficients:

Qg j

Ay »
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represents the number of individuals of the species designated by the first subscript that could be
added to its population by the removal of one individual of the second species. Thus, in the Great
Smoky Mountains, removal of one P. glutinosus would result in the addition of 2.26 jordani, and
the removal of about five jordani would result in the addition of one glutinosus. The carrying
capacities represent the calculated number of each species that could be supported by each
environment in the absence of the other species. The similarity of the carrying capacities on the
two mountain ranges shows that the locations chosen for the experiments were similar from the
standpoint of suitability for both species.

The establishment of differences in intensity of competition as the reason for the different
altitudinal distributions poses an evolutionary question. Assuming that the respective popula-
tions of each species share common ancestors in the geologically recent. past, one of the two
ecological situations was probably derived from the other, or both could have been derived from
an intermediate state. There is no distributional or other evidence as to which mountain range
harbors the ancestral ecological relationship.

Both of the alternative hypotheses described above could account for the observed differences
in the intensity of competition. Either resource partitioning evolved in the Balsams, or interfer-
ence mechanisms evolved in the Smokies. The differing color pattern of P. jordani in the two
areas meant that populations could be substituted between the mountain ranges and the fate of
the introduced forms, and of the glutinosus newly exposed to them, could be followed. If
increased competitive ability had evolved in the Smokies, substituting a red-cheeked population
of jordani from there for the grey-cheeked form on plots in the Balsams should be detrimental to
the local glutinosus population, which would thus be exposed to a group of salamanders
specifically evolved to compete better with it. If, on the other hand, resource partitioning had
evolved in the Balsams, the effect of the substitution on glutinosus should be minimal, since it
would have different requirements from the introduced form. The reciprocal substitution should
result in an improved situation for glutinosus, because if interference had evolved in the Smokies,
it would be relieved of the extra competitive ability of the local jordani; and if resource
partitioning had evolved in the Balsams, the introduced form should have different requirements,
and thus have less negative influence. These experiments required extra control plots, to confirm
the ability of the introduced forms to survive and reproduce in the new location in the absence of
competition. Accordingly, both species were removed from two plots in each area, and jordani
from the distant location were introduced. A by-product of these controls was the ability to
measure the effect of the local glutinosus on the introduced jordani.

The results confirmed the hypothesis that interference competition has evolved in the Great
Smoky Mountains (Hairston, 1980b; 1983a). Introducing red-cheeked jordani into the Balsam
Mountains resulted in a statistically significant decrease in the number of gluzinosus, relative to
the controls; introducing grey-cheeked jordani into the Great Smoky Mountains resulted in a
significant increase in the number of glutinosus. The competition coefficients calculated from
these experiments are given in Table 3.

The effect of the highly competitive P. jordani from the Smokies on P. glutinosus in the
Balsams was twice as great as on its coevolved glutinosus, and three times as great as the effect of
Balsams jordani on its local glutinosus. P. glutinosus in the Smokies was appreciably more
effective against the introduced jordani than the Balsams glutinosus was against the same form.
Neither species from the Balsams had any appreciable effect on the opposite species from the
Smokies, even though they had been shown to compete with each other, as shown in Table 2. If
resource partitioning were responsible for the smaller competition coefficients in the Balsams,
then Balsams salamanders should have had a measurable effect on populations from the
Smokies. That they did not is additional evidence in favor of the evolution of specific interference
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Table 3. Coefficients of competition between Plethodon jordani and P. glutinosus for combinations
between the two areas where competition is strong and weak, respectively.

Smokies jordani Balsams jordani
Vs vs
Balsams glutinosus Smokies glutinosus

g, 0.40 0.03
e 0.00 0.87

mechanisms in both species in the Smokies, and against the evolution of resource partitioning in
the Balsams.

The search for a limiting resource: an indirect test for food competition

The resource most commonly assumed to be in limited supply is food, and most plethodontid
salamanders, including P. jordani and P. glutinosus, qualify as potential competitors for food,
since they are generalist predators feeding on any moving organism of an appropriate size. In
addition to the experimental species in the previous studies, four or five other terrestrial species
of plethodontids were observed on the plots. All of them overlap broadly in diet with P. jordani
and P. glutinosus (Hamilton, 1932; Jameson, 1944; Hairston, 1949; Davidson, 1956; Whitaker
and Rubin, 1971; Powders and Tietjen, 1974; Burton, 1976). If food is a limiting resource in
communities of these animals, removal of either of those two species (respectively 40-50% and
10% of the total salamander biomass on the plots) should have had a favorable effect on the
abundances of the other species. There was no evidence for competitive release of any of the
remaining five species of salamander following removal of either P. jordani or P. glutinosus
(Hairston, 1981). The abundance of Plethodon serratus, the species most like the two experimen-
tal ones, did not differ significantly on removal vs control plots in either the Balsam Mountains or
the Great Smoky Mountains, and the results were similar for the other plethodontid species
(Desmognathus ochrophaeus, D. wrighti, D. imitator and Eurycea bislineata). Significant differ-
ences in density between control and removal plots were found only as frequently as expected by
chance. We conclude that food does not limit the populations of this group of species. These
results also imply that P. jordani and P. glutinosus do not compete for food. If they did, the
shared resource would be much more abundant after the removal of one of them, and thus should
have benefited the remaining members of the plethodontid community.

Direct tests for niche-partitioning

The observed geographic variation in the intensity of interspecific competition, measured by the
removal experiments, formed the basis for several studies that attempted to relate the degree of
niche overlap between P. jordani and P. glutinosus to the intensity of competition in the two
areas. The general form of the hypothesis tested in these studies is that the species should differ
more in resource use in the Balsam Mountains, where competition is weaker, than they do in the
Great Smoky Mountains, where competition is more intense. Confirmation of this hypothesis
would give strong support for the theory that resource partitioning is the dominant evolutionary
response to interspecific competition. Of course, if the availability of different parts of the
resource differed greatly between the areas, the test would not be valid. However, that would be
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an assumption in violation of the obvious similarity between the two areas, as shown by the biota,
as well as their suitability for the two species of Plethodon, as shown by the similar carrying
capacities (Table 2). No single resource has yet been identified as a limiting factor for either
species, and therefore two commonly partitioned resources were analyzed: food and foraging
microhabitats. There is no evidence that the salamanders partition their use of resources in time.
Timing of activity, both diel (they are nocturnal) and seasonal (May-October), is very similar in
the two species, as confirmed repeatedly during the removal experiments.

These two species are active only at night, when they come out from retreats below the surface
of the ground. On some humid, foggy nights many individuals can be observed climbing on
various plants. Sometimes, the entire active population appears to do so. Except in August and
September, when adults can be found mating, the purpose of this above-ground activity appears
to be obtaining food, and therefore location could be an important element in any resource
partitioning.

To test the above hypothesis that differences in diet are greater in the Balsams, where
competition is less intense, than in the Smokies, specimens of both species were collected on
different nights in both areas between nightfall and 0100 h, when activity declines. Stomach
contents were obtained by pumping out the salamanders’ stomachs (Fraser, 1976). Similarity of
diet in each area (Fig. 3) was analyzed in two ways: a non-parametric test (Kendall’s tau, see
Siegel, 1956) for a correlation between the frequencies of prey items in the diets of the two
species, and the overlap index: 6=1-0.5 Y.|Pi, — P;;|, where P is the proportion of prey taxon i
in the stomach contents of species h or j. This index has a value of 1.0 when diets are identical
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MYRIAPODA
L COLEOPTERA]
FORMICIDAE
A ISOPODA
COLEOPTERA LARVAE
| LEPIDOPTERA LARVAE
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Figure 3. The diets of Plethodon jordani | HOMOPTERA
. . . B | HYMENOPTERA
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(A) and the Great Smoky Mountains (B). T EPIDOPTERA LARVAE
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nosus stomachs and 51 jordani stomachs; [l_ ORTHOPTERA
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and 0 when no items are consumed in common. Kendall’s tau was 0.389 in the Balsams and 0.055
in the Smokies, the null hypothesis being that the selection of prey by the two species was
independent. In neither area was there a significant correlation between the diets, but the
similarity was greater in the Balsams, contrary to the hypothesis being tested. Similarly, 8 in the
Balsams was 0.721 and 0.442 in the Smokies. Again, the difference is in the wrong direction for
the hypothesis that food has been partitioned where competition has been found to be weaker.

As the position of each salamander collected was recorded, the species could be compared for
foraging microhabitats. There was no significant difference between the species in the overall
proportions found climbing at either location. This varied on different nights from 0 to 0.65 in the
Smokies and from 0.04 to 0.87 in the Balsams (species pooled for each area). The difference
between areas is probably spurious, as the reverse was observed during the removal experiments.
It is likely that observations were made on wetter nights in the Balsams in this particular study,
and in the Smokies during the removal experiments. Plethodon glutinosus was found climbing
significantly more on woody vegetation and P. jordani on herbaceous plants, a difference related
to the relative sizes of the two species. The larger glutinosus is better supported on shrubs and
trees than on herbs.

If natural selection had increased the amount of partitioning of microhabitats, we should
expect greater differences between the behavior of the two species within the narrow zone of
overlap where competition is strong than above the zone (P. jordani) or below it (P. glutinosus).
The reverse was true. Within the zone of altitudinal overlap, 16 of 148 glutinosus (0.11) and 19 of
132 jordani (0.14) were climbing. The difference is not statistically significant. Above the overlap,
11 of 66 jordani (0.17) and below the overlap 0 of 109 glutinosus were climbing. Thus, the two
species were more alike where they occurred together than where they were alone, in direct
contradiction to the hypothesis of microhabitat partitioning.

Neither food nor microhabitat gave any evidence of being a resource that has been partitioned

or is being partitioned between the two competing species. It is worth reporting that when

Stenhouse began this work, she expected to find evidence of resource partitioning, using the
approach that she took. Since the results of the reciprocal transplant experiments were not
complete, it was a reasonable expectation, based on the dominant theory of community organi-
zation. The outcome of her study was consistent with the experimental manipulation, and some
basis other than resource partitioning was sought for the relationship between Plethodon jordani
and P. glutinosus.

Selection for competitive ability: the behavioral basis of alpha selection

The studies described above tested predictions of the hypothesis that differences between
populations from the Balsam and Great Smoky Mountains in the intensity of competition are due
to the evolution of niche differences between species in the Balsam Mountains populations, but
not in those in the Great Smoky Mountains. The alternative hypothesis is that the intensity of
competition has increased in the Smokies by the process of alpha selection (Hairston, 1980b,
1983a). In evolutionary ecology, the terms r selection and K selection are well known, r selection
referring to the process whereby species become adapted to uncertain environments in which it is
advantageous for a genotype to be able to increase in abundance rapidly, and K selection
referring to the process whereby species become adapted to environments that are in some sense
‘saturated’, in which the ability of a genotype to take and retain limited resources is favored
(MacArthur and Wilson, 1967). As described above, the term alpha selection was added later to
designate the evolution of interference mechanisms (e.g. aggressive behavior or allelopathy)
against competing species.
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There is much experimental evidence that intraspecific competition among salamanders is
mediated through aggressive behavior (Jaeger, 1974, 1981; Jaeger and Gergits, 1979; Jaeger et
al., 1983; Jaeger et al., 1986). Plethodon cinereus has the attributes of territoriality, in that an
individual marks an area with cloacal secretions, recognizes its own and those of others, and
attacks intruders. Like P. cinereus, P. jordani and P. glutinosus are tractable for laboratory
investigations. They carry out their behaviorial repertory within a relatively small space, and are
not especially sensitive to human observers.

Two sets of experiments were undertaken to test the hypothesis that alpha selection for
interspecific interference has occurred in the salamanders in the Great Smoky Mountains, but not
in the salamanders in the Balsam Mountains, and to determine the mechanism of interference
(Nishikawa, 1985, 1987). In these experiments, intraspecific and interspecific aggressive behavior
of the two species from both areas were compared in laboratory arenas under standardized test
conditions. For each observation, a salamander was introduced into a circular plastic container
that already held a resident individual of the same sex. The behavior of the resident was watched
for 45 min. Four different kinds of behavior pattern were classified as aggressive: Chase, Lunge,
Snap and Bite. These are shown separately in Figures 4-9, but statements about statistical
significance are based on Principal Components Analysis, in which the frequencies of aggressive
acts were analyzed simultaneously.

Geographic variation in aggressive behavior

In the first set of experiments, aggressive behavior was compared between salamanders from the
Balsam and Great Smoky Mountains. The mean frequencies of aggressive behavior patterns
exhibited by P. glutinosus from the two mountain ranges during encounters with sympatric P.
jordani are shown in Fig. 4. Overall, glutinosus from the Great Smoky Mountains were signifi-
cantly more aggressive toward sympatric heterospecifics than were those of Balsam Mountains

Sy

nN

CHASE LUNGE SNAP BITE

Figure 4. Average frequency (+ 1 SE) of
aggressive behavior patterns exhibited by
Plethodon glutinosus residents from the 2
Smokies and Balsams during encounters
with sympatric P. jordani (upper) and con-
specifics (lower). Filled bars = Smokies; A

unfilled bars = Balsams. The salamanders in
a w
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Nishikawa, 1985.)




256 Hairston, Nishikawa and Stenhouse

Figure 5. Average frequency (+ 1 SE) of

aggressive behavior patterns exhibited by 6
Plethodon jordani residents from the Smok-
ies and Balsams during encounters with sym-
patric P. glutinosus (upper) and conspecifics
(lower). Symbols and salamanders as in Fig.
4. (From Nishikawa, 1985.)
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origin. No significant differences were found in intraspecific aggressive behavior between the two
populations. The same was true of non-aggressive behavior patterns when intruders were absent.

The interspecific aggression of P. glutinosus supports the hypothesis that interference has
evolved in the Great Smoky Mountains. The greater demographic effects of Smokies glutinosus
on sympatric jordani, as well as on jordani transplanted from the Balsams (Table 3), appears to
be the result of more frequent interspecific interference behavior by Smokies glutinosus. Further-
more, the more moderate aggressiveness of Balsams glutinosus toward heterospecifics can
account for the lack of measurable impact of this form on the Smokies jordani that were
transferred to the Balsams.

Aggressive behavior differed less between the populations of P. jordani than between the
populations of P. glutinosus (Fig. 5). No significant difference was found between the populations
in overall aggressiveness toward sympatric individuals of either species. This result might be
expected on the basis of the relatively small difference in the estimated competitive effects of
Jordani on glutinosus in the two areas.

Species-specific interference

In the second set of experiments, for each species, interspecific aggression was compared with
intraspecific aggression within mountain ranges to test whether or not the aggression exhibited by
salamanders is species-specific. The experimental technique was the same as for the first set of
experiments, as described above. Each resident was observed during an encounter with a
sympatric heterospecific and with a sympatric conspecific intruder presented in random sequence
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Figure 6. Average frequencies (+ 1 SE) of
aggressive behavior patterns of P. jordani
from the Balsam Mountains during
encounters with sympatric conspecifics
(unfilled bars) and heterospecifics (filled
bars).

at two-day intervals. The frequencies of aggressive behavior patterns exhibited by P. jordani
from the Balsam Mountains during encounters with conspecifics and heterospecifics are shown in
Fig. 6. A significantly greater frequency of aggression was directed at conspecifics. In contrast, P.
jordani from the Great Smoky Mountains were more aggressive towards P. glutinosus than they
were towards conspecifics, although not significantly so (Fig. 7). Thus, as expected, jordani were
relatively more aggressive to heterospecific competitors in the Smokies than in the Balsams. For
P. glutinosus, no statistically significant differences were obtained between aggression toward
conspecifics and heterospecifics, either in the Balsams (Fig. 8) or in the Smokies (Fig. 9). In the
Smokies, the intensity of aggression of glutinosus toward all intruders, regardless of species, is

greater than in the Balsams.

Figure 7. Average frequencies (+ 1 SE) of
aggressive behavior patterns of P. jordani
from the Great Smoky Mountains during
encounters with sympatric conspecifics
(unfilled bars) and heterospecifics (filled
bars).
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Figure 8. Average frequencies (+ 1 SE) of
aggressive behavior patterns of P. glutinosus
from the Balsam Mountains during
encounters with conspecifics (unfilled bars)
and heterospecifics (filled bars).
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The results of the two sets of experiments, while they are not symmetrical between areas or
between species, are consistently in favor of the hypothesis that interspecific aggression has
increased in the Great Smoky Mountains. Plethodon glutinosus was significantly more aggressive
toward P. jordani there than in the Balsam Mountains, and P. jordani was less aggressive toward
P. glutinosus in the Balsams than it was toward members of its own species, a result not obtained

on individuals from the Smokies.

The difference in the pattern of variation in aggressive behavior between species appears to be
related to differences in population density and relative abundance. P. jordani is found at higher
densities than P. glutinosus throughout its range in the southern Appalachians, and intraspecific
aggression has been observed in several different populations (Organ, 1958; Hutchison, 1959;

Figure 9. Average frequencies (+ 1 SE) of
aggressive behavior patterns of P. glutinosus
from the Great Smoky Mountains during
encounters with conspecifics (unfilled bars)
and heterospecifics (filled bars).
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Arnold, 1976). In the Balsam Mountains, where interspecific competition is less severe than
elsewhere, P. jordani is more aggressive to conspecifics than to heterospecifics. This is expected if
intraspecific competition is relatively more intense than interspecific competition there. In the
Great Smoky Mountains, alpha selection has brought about an increase in the frequency of
interspecific aggression relative to the frequency of intraspecific aggression, and this is reflected in
the stronger interspecific competition there (Table 2).

In contrast, Plethodon glutinosus exists at lower population densities than P. jordani through-
out the southern Appalachians, and aggression is only known in populations that are sympatric
with that species. Where they occur together, P. jordani outnumbers its larger congener by as
much as six or eight to one (Hairston, 1980a). In sympatry, individuals of the less abundant P.
glutinosus should encounter P. jordani more frequently than they should conspecific individuals.
In the Great Smoky Mountains, glutinosus was more aggressive to all intruders, regardless of
species, than in the Balsam Mountains (Fig. 4), and that greater aggressiveness was reflected in
the more intense competition in the Smokies.

Conclusions

We have accumulated evidence from eight sets of observations and experiments on the distribu-
tion, the intensity of interspecific competition, the use of food and microhabitats, and the
intensity of intraspecific and interspecific aggressive behavior of two closely related species of
salamander in the southern Appalachians. These distributional, demographic and behavioral
data form a coherent, consistent body of information that allows us to draw firm conclusions
about the evolution of Plethodon jordani and P. glutinosus under the influence of interspecific
competition.

Two contrasting, but not mutually exclusive, hypotheses have been advanced to predict the
course of evolution among competing species: niche partitioning and alpha selection. Several
lines of evidence from our experiments contradict the prediction of the niche partitioning
hypothesis that differential exploitation of limited resources will be the result of interspecific
competition, and support the hypothesis that natural selection has favored the evolution of
interference mechanisms:

(1) In transplant experiments, the Balsam Mountains salamanders were predicted to have
some effect on those from the Great Smoky Mountains, because there was measurable competi-
tion between the two species in the Balsams. If competition had simply been reduced to a lower
level there, they should still have had an effect on the heterospecifics from the Smokies. The total
absence of interspecific competitive effects of Balsam Mountains salamanders on those from the
Smokies indicates that competition occurs by interference rather than by exploitation.

(2) In the removal experiments, the competition coefficients, calculated on the assumption of
validity of the Lotka-Volterra equations, are not reciprocal. With purely exploitative competi-
tion, they should be. This is further evidence for interference, which does not require the
competition coefficients to be reciprocal.

(3) The five sympatric plethodontid species that share food resources with P. jordani and P.
glutinosus showed no numerical response to their removal, suggesting that food is not in limited
supply in this community.

(4) While P. jordani and P. glutinosus differed in diet in both areas, these differences were
actually less in weakly competing populations than in strongly competing ones. This is important
evidence against the hypothesis that in the area of weak competition, the species have evolved so
as to partition the resource of food.

(5) Foraging microhabitats were not more different between weakly competing populations
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than between strongly competing ones. Furthermore, foraging microhabitats were more alike in
sympatric populations than in allopatric populations in the same mountain range.

(6) The behavioral experiments on interspecific aggression provide direct evidence that alpha
selection for interspecific interference has occurred in the Great Smoky Mountains populations of
both species. The more intense interspecific aggressive behavior of both species in the Great
Smoky Mountains has resulted in stronger competition there, and has caused the exclusion of P.
Jordani from the lower elevations and the exclusion of P. glutinosus from the higher slopes,
leaving a narrow zone of 70-170 m where they coexist; in contrast to the Balsam Mountains,
where the two species coexist over a zone at least 1350 m wide.

For historical reasons, independent of competition, P. jordani is better adapted to the cool,
moist conditions at the tops of the mountains; P. glutinosus can apparently withstand better the
warmer, dryer conditions at the foot of the mountains. The level of competition, expressed as
aggressive interference, determines the extent to which each species can exclude the other from
intermediate elevations.

The concept of niche partitioning has a rich history, with a coherent mathematical theory and
an impressive body of fact that is consistent with the theory in many details (Cody and Diamond,
1975; Hutchinson, 1978; Roughgarden, 1979). However, the coherence of the theory and the
facts has been achieved at the cost of ignoring alternative hypotheses, and even of disregarding
conflicting observations (Simberloff, 1978, 1983; Roth, 1981; Dayton, 1973). While interference
competition has acquired a theoretical basis (Ayala, Gilpin and Ehrenfeld, 1973; Case and
Gilpin, 1974; Schoener, 1976, 1978), it has not been worked into community theory and its
absence constitutes a serious deficiency in the generality of that theory (Hairston, 1973, 1980b,
1983a). Schoener’s recent review (Schoener, 1983) of field experiments on interspecific competi-
tion revealed that in 100 of 171 studies, some form of interference can be seen to play a role in
competition. That is too large a proportion to be ignored.

In this case, and probably in others, interference competition has led to the superficial
appearance of niche partitioning. However, the causes of the two phenomena, in terms of natural
selection, are quite distinct. The present study permits a clear choice between the two responses
to competition, and strongly supports selection for competitive ability.
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