
Citation: Cambou, B.; Philabaum, C.;

Hoffstein, J.; Herlihy, M. Methods to

Encrypt and Authenticate Digital

Files in Distributed Networks and

Zero-Trust Environments. Axioms

2023, 12, 531. https://doi.org/

10.3390/axioms12060531

Academic Editor: Sidney A. Morris

Received: 15 April 2023

Revised: 9 May 2023

Accepted: 25 May 2023

Published: 29 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Methods to Encrypt and Authenticate Digital Files in
Distributed Networks and Zero-Trust Environments
Bertrand Cambou 1,* , Christopher Philabaum 1, Jeffrey Hoffstein 2,3 and Maurice Herlihy 2,3

1 School of Informatics Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
2 Department of Computer Science, Brown University, Providence, RI 02901, USA;

jeffrey_hoffstein@brown.edu (J.H.); maurie_herlihy@brown.edu (M.H.)
3 Department of Mathematics Brown University, Providence, RI 02901, USA
* Correspondence: bertrand.cambou@nau.edu

Abstract: The methods proposed in this paper are leveraging Challenge–Response–Pair (CRP) mecha-
nisms that are directly using each digital file as a source of randomness. Two use cases are considered:
the protection and verification of authenticity of the information distributed in storage nodes and
the protection of the files kept in terminal devices operating in contested zero-trust environments
comprised of weak signals in the presence of obfuscating electromagnetic noise. With the use of
nonces, the message digests of hashed digital files can be unique and unclonable; they can act as
Physical Unclonable Functions (PUF)s in challenge–response mechanisms. During enrollment, ran-
domly selected “challenges” result in unique output data known as the “responses” which enable the
generation and distribution of cryptographic keys. During verification cycles, the CRP mechanisms
are repeated for proof of authenticity and deciphering. One of the main contributions of the paper
is the development of mechanisms accommodating the injection of obfuscating noises to mitigate
several vectors of attacks, disturbing the side channel analysis of the terminal devices. The method
can distribute error-free cryptographic keys in noisy networks with light computing elements without
relying on heavy Error Correcting Codes (ECC), fuzzy extractors, or data helpers.

Keywords: obfuscation; validation; authentication; digital file; cryptography; electronic noise;
challenge; response

MSC: 94A60; 94A62; 94B70; 94C12

1. Introduction and Background Information

The objective of this work is to develop novel mechanisms that offer proof of authen-
ticity in distributed networks and protect terminal devices operating in zero-trust areas. In
our differentiated approach, we consider several complementary remedies: (i) one-time
use keys for each transaction, (ii) generating keys from the message digest of each file, and
(iii) in zero-trust networks; transmit the data feeding a CRP mechanism through noisy wire-
less channels to enable the decryption on-demand of digital files. All proposed remedies
are designed to handle the erratic bits without ECC. In this section, we are summarizing
some of the relevant work conducted by prior authors to secure digital files and use CRP
mechanisms. Storing and distributing the cryptographic keys needed to protect sensitive
information and terminal devices introduces a level of risk. Of concern are replays, man in
the middle attacks, loss of information in the network, side channel analysis and physical
loss to the opponent of a terminal device [1–3]. Storing non-encrypted files in the terminal
introduces the same risk level as storing the secret keys that decrypt the cipher texts of
these files. In distributed networks, the clients usually store the public–private key pairs in
their terminal devices, which presents an element of risk. The opponents also inject noise
to disturb the wireless communication between the ground operation and terminal device,

Axioms 2023, 12, 531. https://doi.org/10.3390/axioms12060531 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms12060531
https://doi.org/10.3390/axioms12060531
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0001-9272-6527
https://doi.org/10.3390/axioms12060531
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms12060531?type=check_update&version=1

Axioms 2023, 12, 531 2 of 23

introducing difficulty in the distribution of cryptographic keys without heavy ECC, fuzzy
extractors, or data helpers, all of which are leaking information [4–6].

Blockchain technology with digital signatures offers protection in exposed networks,
such as the non-alterability and traceability of chains of transactions [7]. Digital Signature
Algorithms (DSAs) further enhance security by associating the blockchains to a set of
known users and their public keys [8]. Blockchains with digital signatures are exposed
to a variety of possible attacks that introduce risk in validating authenticity, specifically
when operating outside a reliable network [9,10]. Concerns include possible difficulties
in verifying the legitimacy of a file, the theft of private keys, and blockchains that may
be forged by associating altered messages with an altered message digest. To prove the
authenticity of a message in zero-trust networks, it is important to add layers of security
without imposing excessive computing power consumption.

Background information in the area of file verification and distributed networks is
presented in refs. [11–21]. In [11], a Challenge Response Authentication (CRA) of physical
layers is described to avoid exposing passwords. The work presented in [12] shows the
methods to provide verification of information in a ledger. The authors of [12] define
a “cryptographic challenge nonce” and a protocol that enables third parties to verify
information; the technology is based on digital signatures with public/private keys. In [13],
document tracking schemes on a distributed ledger [13] are presented and details how to
insert unique identifiers and hash values for this tracking; a processor coupled with the
storage device is used in the protocols. In [14,15], the authors present a secure exchange
of signed records. These records contain digital signatures of the senders and their public
keys, which enhances security. Methods to authenticate data based on proof verification
are shown in [16–18]. Some of the data may be external to the network, protected by a
blockchain and DSA with public keys. Uhr et al. describe the methods to verify certificates
based on blockchains. The system compares the content of a previously known certificate
by a financial institution with the content of a certificate obtained at the point of use. Sheng
et al. describe computationally efficient methods to audit transactions. The methods are
based on blockchains, Bloom filters, and digital signatures. Information such as using a
timestamp as an entry and wallet address are part of the scheme. In [19], a method to
validate documents with blockchains and other information is presented. Only portions
of the documents are shared; the full document is not revealed. Publication [20] describes
contract agreement verifications. Electronic signatures are inserted in the contracts and the
blockchains with a method to share public/private key pairs. Publication [21] presents a
management system protecting enterprise data with blockchains. The computing device
selects what data to incorporate in the blockchain to offer adequate protections.

The CRPs developed for PUFs provide relevant background information for our
work even if they do not use a digital file [22–30]. Authentication based on a challenge, a
response, a PUF, and machine learning are described in [22]. The development of secure
digital signatures using PUF devices with reduced error rates is presented in [23,24].
Cryptographic protocols with PUF-based CRPs are shown in [25,26]. Biometry with a CRP
mechanism is suggested in [27,28]. CRP mechanisms and CRA schemes are also applied
to protect centralized or distributed networks [29–31]. An example of a scheme is the
formation of a look-up table with indexes in the left column and passwords in the right
column. The challenges point at an index to be paired with an associated password, which
avoids the problem of having to change the passwords periodically.

Some of the contributions of this work include a novel approach based on CRP schemes
to protect and authenticate each digital file individually, with the objective to mitigate
several vectors of attack. The idea to inject obfuscating noise during ground-to-terminal
communication is developed to limit the ability of opponents to share the same wireless
network for side channel analysis. To facilitate a quick adoption of the novel methods,
all encryption algorithms are standardized cryptographic algorithms recommended by
the National Institute of Standards and Technologies (NIST), as well as the codes under

Axioms 2023, 12, 531 3 of 23

consideration for standardization by NIST for post-quantum cryptography (PQC). The
paper is organized as follows:

• [Section 2] The first layer of technology needed for our proposed schemes is described,
namely the design of the CRP mechanisms directly based on digital files. The algo-
rithms extracting the responses from randomly selected challenges are presented as
well as methods to generate cryptographic keys from the CRPs.

• [Section 3] The protocols to verify the authenticity of digital files with CRP mecha-
nisms in distributed networks are presented. The algorithms for enrolment and for
verification are detailed. An example of a use case that is using these protocols with
an agent, storage node, and smart contract is given. A security analysis, in which we
list potential issues and remedies, is also provided.

• [Section 4] The protocols to securely distribute digital files to terminal devices exposed
to zero-trust networks are suggested. A use case that distributes cryptographic keys
while injecting erratic bits is presented.

• [Section 5] The potential problems created by residual erratic bits in the recovery
keys are examined in detail. A model is developed and verified, and light error
management schemes are suggested.

Finally, Section 6 presents the summary and future work. A table listing the acronyms
used herein is presented in Attachment A, followed by the list of references.

2. CRP Mechanism Based on Digital Files

Methods to design digital file-based CRP mechanisms will now be presented. The
method detailed in Section 2.1 describes a generic response generation scheme for applica-
tions in distributed networks. The implementation detailed in Section 2.2 is an example of
protocol offering higher levels of security in distributed networks.

2.1. Response Generation with File-Based CRP Mechanism

The input data of the CRP mechanism is derived from file F. Its ciphertext C is concate-
nated with nonce ω to generate a file C* of constant length d= 2D, where D is the number of
digits (for example, if a desired d = 1 million, then D = 20). The resulting d bits are located
at addresses varying from 1 to d. Changing a single bit in file F results in a totally different
stream C*. This can be performed with a variety of methods; one possible implementation
is the following:

• Encrypt F with private key Sk, and a PQC scheme (PQC and DSA) under standardization by
NIST [32] such as the Cryptographic Suite for Algebraic Lattices (CRYSTALS)-Kyber [33,34],
CRYSTALS-Kyber [35,36], NTRU [37–39], Classic McElice [40], SPHINCS [41], and
Falcon [42].

• The ciphertext is hashed with Standard Hash Algorithm (SHA)-512.
• The resulting steam is XORed with 512-bit long nonce ω.
• The function SHA algorithm and Keccack (SHAKE) is used to extend the 512-bit long

stream to d-bits. The combination of SHA-3 and SHAKE is NIST-compliant [43–45].

The CRP mechanism is based on the d-bit long stream C* to generate N responses
from N challenges:

• Challenges: A “challenge” is defined as the digital information needed to point at a
particular position in the d-bit long stream C*. A stream of bits S* is generated by
hashing and extending with eXtended output Function (XoF), creating a randomly
selected seed S. The stream S* is segmented into N challenges {q1, . . . , qi, . . . , qN} that
are D-bit long. The D bits of each challenges qi are converted into number xi, with
xi ∈ {1, d }, which is an address in C*, resulting in N addresses {x1, . . . , xi, . . . , xN}

• Responses: The N addresses generate the P-bit long responses {r1, . . . , ri, . . . , rN}. From
each address xi, P-bit long responses are generated from C*. The iterative method to
find the P positions

{
xi,1, . . . , xi,j, . . . , xi,P

}
, and read the P-bits is the following:

Axioms 2023, 12, 531 4 of 23

The first position is: x(i,j=1) = xi. The other positions x(i,j) are given by the linear
congruent random number generator, i ∈ {1, N }, j ∈ {1, P }, see Equation (1):

x(i,j) = (αx(i,j−1) + β)mod(2D); with α and β prime numbers (1)

Algorithm 1 and the block diagram shown in Figure 1 summarize the above protocol.
The output after response generation is {C, ω, S} and {r1, . . . , ri, . . . , rN}. Such a CRP
mechanism is highly secure as three totally independent streams are requested to uncover
the responses which are C, ω, and S. Protecting just one of the three provides acceptable
security. The computing power, or “gas price”, required to run the CRP mechanism is low.

Axioms 2023, 12, x FOR PEER REVIEW 4 of 23

The first position is: 𝑥(,) = 𝑥 . The other positions 𝑥(,) are given by the linear
congruent random number generator, 𝑖 ∈ {1, 𝑁}, 𝑗 ∈ {1, 𝑃}, see Equation (1): 𝑥(,) = 𝛼 𝑥(,) + 𝛽 𝑚𝑜𝑑(2) ; with 𝛼 and 𝛽 prime numbers (1)

Algorithm 1 and the block diagram shown in Figure 1 summarize the above protocol.
The output after response generation is {C, 𝜔, S} and {𝑟 , … , 𝑟 , … , 𝑟 }. Such a CRP mecha-
nism is highly secure as three totally independent streams are requested to uncover the
responses which are C, 𝜔, and S. Protecting just one of the three provides acceptable se-
curity. The computing power, or “gas price”, required to run the CRP mechanism is low.

Algorithm 1: Generate a set of responses with C
1: Variable input data: file {C}
2: Nonce {ω}, and stream {S} ← random number generator
3: → Module 1: Generate a set of responses with C, and {𝝎,S}:
 3.1: Static input data: positive integers d, D, N, P, 𝛼, 𝛽, d = 2D and 𝛼, 𝛽 are prime
 3.2: MD ← Hash (C) (ex: SHA-256)
 3.3: C* ← XOV(concatenate (MD, ω)) (ex: SHAKE)
 [Comment: Organize C* with bits located at addresses 1 to d]
 3.4: S*← XOV (S) ; with S* is a (N × 𝐷)-bit long stream
 3.5: {𝑞 , … , 𝑞 , … , 𝑞 } ← S* ; Split S* into N, D-bit long, challenges 𝑞 ; i∈{1, N})
 3.6: {𝑥 , … , 𝑥 , … , 𝑥 } ← {𝑞 , … , 𝑞 , … , 𝑞 } ; for N positions 𝑥i in C*; 𝑥 ∈ {1, d = 2 }

3.7:

{𝑟 , … , 𝑟 , … , 𝑟 } ← {𝑥 , … , 𝑥 , … , 𝑥 }; for all N, P-bit long, responses 𝑟
For each position 𝑥 generate P-bit long response 𝑟 in the following way:

 • {𝑥 , , … , 𝑥 , , … , 𝑥 , } ← 𝑥 ; j ∈ {1, P}
[comment: find P positions 𝒙𝒊,𝒋 in C* with congruent linear generator]

 o if j = 1, then 𝑥(,) = 𝑥
 o Else, iterate: 𝑥(,) = 𝛼 𝑥(,) + 𝛽 𝑚𝑜𝑑(2)

 • 𝑟 ← {𝑥 , , … , 𝑥 , , … , 𝑥 , };
[Comment: read the P positions 𝒙𝒊,𝒋 in C* to generate P-bit long response 𝒓𝒊]

4: Output: C, {S, 𝜔,} and the N responses {𝑟 , … , 𝑟 }

Figure 1. Block diagram of a CRP mechanism generating a set of responses. The file F is encrypted
and concatenated with a nonce to compute a crypto-file. A seed generates a set of challenges.

The probability to point several times to the same position in C* is non-negligeable.
This exposes the protocol to a frequency analysis and creates collisions, as several re-
sponses ri are then identical. One solution tracks the positions with an index to generate
different responses when several challenges are pointing at the same position. For exam-

Figure 1. Block diagram of a CRP mechanism generating a set of responses. The file F is encrypted
and concatenated with a nonce to compute a crypto-file. A seed generates a set of challenges.

Algorithm 1: Generate a set of responses with C
1: Variable input data: file {C}
2: Nonce {ω}, and stream {S}← random number generator
3: → Module 1: Generate a set of responses with C, and {ω,S}:

3.1: Static input data: positive integers d, D, N, P, α, β, d = 2D and α, β are prime
3.2: MD←Hash (C) (ex: SHA-256)
3.3: C*← XOV(concatenate (MD,ω)) (ex: SHAKE)

[Comment: Organize C* with bits located at addresses 1 to d]
3.4: S*← XOV (S); with S* is a (N× D)-bit long stream
3.5: {q1, . . . , qi, . . . , qN} ← S*; Split S* into N, D-bit long, challenges qi; i ∈ {1, N})
3.6: {x1, . . . , xi, . . . , xN} ← {q1, . . . , qi, . . . , qN}; for N positions xi in C*; xi ∈

{
1, d = 2D}

3.7:
{r1, . . . , ri, . . . , rN} ← {x1, . . . , xi, . . . , xN}; for all N, P-bit long, responses ri
For each position xi generate P-bit long response riin the following way:

•
{

xi,1, . . . , xi,j, . . . , xi,P

}
← xi; j ∈ {1, P}

[comment: find P positions xi,j in C* with congruent linear generator]
if j = 1, then x(i,j=1) = xi

Else, iterate: x(i,j) =
(

αx(i,j−1) + β
)

mod
(
2D)

• ri ←
{

xi,1, . . . , xi,j, . . . , xi,P

}
;

[Comment: read the P positions xi,j in C* to generate P-bit long response ri]
4: Output: C, {S, ω,} and the N responses {r1, . . . , rN}

The probability to point several times to the same position in C* is non-negligeable.
This exposes the protocol to a frequency analysis and creates collisions, as several responses
ri are then identical. One solution tracks the positions with an index to generate different
responses when several challenges are pointing at the same position. For example, when a
position is selected a second time, the β of Algorithm 1 step 3.7 can be replaced by β + 1
which is a sufficient offset to generate a distinct response; iterating, the β is replaced by
β + 2 during the third collision, et cetera.

Axioms 2023, 12, 531 5 of 23

2.2. Generation of an Orderly Subset of Responses

In the scheme described in Section 2.1, the responses generated from the CRP mecha-
nism are directly converted into cryptographic keys K to encrypt a message M. To enhance
security, we developed a scheme in which the ephemeral key K is picked randomly, in-
dependent from the CRP mechanism. Algorithm 2 for encryption and Algorithm 3 for
decryption are summarized in Figure 2, and shown as follows:

Algorithm 2: Generate a subset of responses with C, and encrypt M
1: Variable input data: {C}, {M}
2: Nonce {ω}, and stream {S}← random number generator
3: → Use Module 1: Generate a set of responses with C, and {ω,S}:

Output data: All N, P-bit long, responses {r1, . . . , rN}.
4: → Module 2: Encrypt M and generate a subset of responses with{r1, . . . , rN}:

4.1: key K with f states of “1”: {k1, . . . , kN} ← random number generator
4.2: M*← encrypt(M, K)
4.3: Filter subset of f responses

{
r′1, . . . , r′ f

}
located at positions of K with state of “1”

4.4: Erase M, K, and the N − f responses located at positions of K with state of “0”
5: Output: C, {S, ω, M*} and the f responses

{
r′1, . . . , r′ f

}

Algorithm 3: Decrypt M with C and the subset of f responses
1: Variable input data: C, {S,ω, M*} and the f, P-bit long, responses

{
r′1, . . . , r′ f

}
2: → Use Module 1: Generate a set of responses with C, and {ω,S}:

Output data: the N, P-bit long, responses {r1, . . . , ri, . . . , rN}, i ∈{1, N}
3: → Module 3: Decrypt M from M* with the f responses

{
r′1, . . . , r′ j, . . . , r′ f

}
, j ∈{1, P}:

3.1: Retrieve key K by comparing the N responses ri with the subset of f responses r′ j:
• If ri matches at least one response r′i , then ki = 1
• Else, ki = 0

3.2: M← Decrypt(M*, K)
4: Output: M

Axioms 2023, 12, x FOR PEER REVIEW 5 of 23

ple, when a position is selected a second time, the 𝛽 of Algorithm 1 step 3.7 can be re-
placed by 𝛽 + 1 which is a sufficient offset to generate a distinct response; iterating, the 𝛽 is replaced by 𝛽 + 2 during the third collision, et cetera.

2.2. Generation of an Orderly Subset of Responses
In the scheme described in Section 2.1, the responses generated from the CRP mech-

anism are directly converted into cryptographic keys K to encrypt a message M. To en-
hance security, we developed a scheme in which the ephemeral key K is picked randomly,
independent from the CRP mechanism. Algorithm 2 for encryption and Algorithm 3 for
decryption are summarized in Figure 2, and shown as follows:

Algorithm 2: Generate a subset of responses with C, and encrypt M

1: Variable input data: {C}, {M}
2: Nonce {ω}, and stream {S} ← random number generator
3: → Use Module 1: Generate a set of responses with C, and {𝝎,S}:
 Output data: All N, P-bit long, responses {𝑟 , … , 𝑟 }.
4: → Module 2: Encrypt M and generate a subset of responses with {𝑟 , … , 𝑟 }:
 4.1: key K with f states of “1”: {𝑘 , … , 𝑘 } ← random number generator
 4.2: M* ← encrypt(M, K)

4.3: Filter subset of f responses {𝑟′ , … , 𝑟′ } located at positions of K with state of “1”
 4.4: Erase M, K, and the 𝑁 − 𝑓 responses located at positions of K with state of “0”
5: Output: C, {S, 𝜔, M*} and the f responses {𝑟′ , … , 𝑟′ }

Algorithm 3: Decrypt M with C and the subset of f responses
1: Variable input data: C, {S, ω, M*} and the f, P-bit long, responses {𝑟′ , … , 𝑟′ }
2: Use Module 1: Generate a set of responses with C, and {ω ,S}:
 Output data: the N, P-bit long, responses {𝑟 , … , 𝑟 , … , 𝑟 }, i ∈ {1, N}
3: Module 3: Decrypt M from M* with the f responses {𝑟′ , … , 𝑟′ , … , 𝑟′ }, j ∈ {1, P}:
 3.1: Retrieve key K by comparing the N responses 𝑟 with the subset of f responses 𝑟′ :
 • If 𝑟 matches at least one response 𝑟 , then 𝑘 = 1

• Else, 𝑘 = 0
 3.2: M ← Decrypt(M*, K)
4: Output: M

Figure 2. CRP mechanism with subset of responses. The N responses are generated with the CRP.
The subset of f responses corresponds to the position of the randomly picked K with a state of 1.
Figure 2. CRP mechanism with subset of responses. The N responses are generated with the CRP.
The subset of f responses corresponds to the position of the randomly picked K with a state of 1.

The key K, which is randomly picked here, has two purposes: encrypting M and
generating an orderly subset of responses. Only the f positions of K with a state of “1” are
pointing at positions in the sequence of N responses that are kept, while the responses
at the N − f positions of K with a state of “0” are skipped. The resulting orderly subset
of f responses is kept for key recovery. Four totally independent streams are requested
to uncover the responses, which are C, ω, S, and the subset of responses. The size of
the responses needed to run this CRP mechanism is higher than the size as presented in

Axioms 2023, 12, 531 6 of 23

Section 2.1. For example, approximately 128 responses, that are 100-bit long, are generated
when K is 256-bit long. Therefore, 1.6 Kbytes are retrieved, rather than 256 bits in the
simpler protocol. We notice that the orderly subset of responses does not have a fixed
length. Assuming that the random number generator of the 256-bit long K has an equal
probability to get a state “0” or “1”, the probability P(X = x) of obtaining an x-bit long
subset is shown in Figure 3. The median value of the distribution is 128 and varies
approximately from 100 to 160. To obfuscate this information, we add nonces at the end
of the subset to keep the length to 160 responses. The key recovery scheme as presented
in Section 4 is based on a search from left to right that terminates when the sequence of
256 bits is identified; additional responses are ignored.

Axioms 2023, 12, x FOR PEER REVIEW 6 of 23

The key K, which is randomly picked here, has two purposes: encrypting M and gen-
erating an orderly subset of responses. Only the f positions of K with a state of “1” are
pointing at positions in the sequence of N responses that are kept, while the responses at
the 𝑁 − 𝑓 positions of K with a state of “0” are skipped. The resulting orderly subset of f
responses is kept for key recovery. Four totally independent streams are requested to un-
cover the responses, which are C, ω, S, and the subset of responses. The size of the re-
sponses needed to run this CRP mechanism is higher than the size as presented in Section
2.1. For example, approximately 128 responses, that are 100-bit long, are generated when
K is 256-bit long. Therefore, 1.6 Kbytes are retrieved, rather than 256 bits in the simpler
protocol. We notice that the orderly subset of responses does not have a fixed length. As-
suming that the random number generator of the 256-bit long K has an equal probability
to get a state “0” or “1”, the probability 𝑃(𝑋 = 𝑥) of obtaining an x-bit long subset is
shown in Figure 3. The median value of the distribution is 128 and varies approximately
from 100 to 160. To obfuscate this information, we add nonces at the end of the subset to
keep the length to 160 responses. The key recovery scheme as presented in Section 4 is
based on a search from left to right that terminates when the sequence of 256 bits is iden-
tified; additional responses are ignored.

Figure 3. Probability to have the length of the subset at x when K is 256-bit long. The average length
of the subsets is centered at 128 with the bulk of the distribution in the 100 to 160 range.

The injection of errors in the subset of responses is detailed in Sections 4 and 5. Pro-
vided the BERs remain below an acceptable threshold (i.e., below 25%) the subset of or-
derly responses can be recognized as part of the iterative search; therefore, ephemeral key
K can be recovered. In zero-trust networks, such an obfuscation can disturb opponents
sharing the noisy network. Certain attacks are mitigated since the noisy responses are dif-
ferent than the ones generated from F and the CRP mechanism.

3. Protocols Verifying the Authenticity of Digital Files in Distributed Networks
The objective of the protocols presented in this section is to allow third parties oper-

ating openly in the distributed network to validate the authenticity of a file without the
over-burdening of computational resources. The suggested protocols are based on the
CRP mechanism discussed in Section 2 with the same symbols. The message of authentic-
ity M was replaced by public key Pk computed internally to add a DSA.

Figure 3. Probability to have the length of the subset at x when K is 256-bit long. The average length
of the subsets is centered at 128 with the bulk of the distribution in the 100 to 160 range.

The injection of errors in the subset of responses is detailed in Sections 4 and 5.
Provided the BERs remain below an acceptable threshold (i.e., below 25%) the subset of
orderly responses can be recognized as part of the iterative search; therefore, ephemeral
key K can be recovered. In zero-trust networks, such an obfuscation can disturb opponents
sharing the noisy network. Certain attacks are mitigated since the noisy responses are
different than the ones generated from F and the CRP mechanism.

3. Protocols Verifying the Authenticity of Digital Files in Distributed Networks

The objective of the protocols presented in this section is to allow third parties oper-
ating openly in the distributed network to validate the authenticity of a file without the
over-burdening of computational resources. The suggested protocols are based on the CRP
mechanism discussed in Section 2 with the same symbols. The message of authenticity M
was replaced by public key Pk computed internally to add a DSA.

3.1. Description of the Protocols with CRP Mechanisms

The overall mechanism to generate the responses is described in Section 2.1. For
example, if d = 1024, D = 10, N = 32, and P = 8, the responses are 256-bit long. The
entropy is about 200, as the number of possible CRPs is given by Equation (2):(

d = 1024
N = 32

)
= 4.6× 1060 ≈ 2200 (2)

3.1.1. Enrollment Cycle

The protocol has two steps: the initial set up or enrollment performed secretly by the
client or designate, and the verification of the authenticity cycle performed openly in the
distributed network. Algorithm 4 for enrolling file F is shown as follows:

Axioms 2023, 12, 531 7 of 23

Algorithm 4: Enrollment cycle for file F
1: Input data: Some file F
2: Nonce {ω}, stream {S}, and seed {L}← random number generator
3: Generate ephemeral public-private key pair {Sk, Pk} from L (ex: PQC algorithm)
4: C← Encrypt(F, Sk)
5: M← Pk
6: → Use Module 1: Generate a set of N responses with C, and {ω,S}:
• Static input data: Positive integers d, N, P, α, β

• Output data: All N, P-bit long, responses {r1, . . . , rN}
7: K← concatenate{r1, . . . , rN}; where K is a 256-bit long key
8: M*← Encrypt(Pk, K)
9: Erase: {C*, Sk, Pk, K}, and {r1, . . . , rN}
10: Output: C, and steams {S,ω, M*}

During the enrollment of File F, a randomly selected seed L generates a key pair (Sk;
Pk) with an asymmetrical algorithm such as Dilithium. The file F is encrypted with Sk to
generate the ciphertext C. The randomly selected nonce ω is concatenated with C to form a
d-bit long file C* that is at the center of the CRP mechanism. A randomly picked seed S is
converted into a set of N, D-bit long, challenges generating a set of N, P-bit long responses.
The responses are concatenated to generate the ephemeral key K, which encrypts the public
key Pk and forms ciphertext M*. After completion of the enrollment cycle, the responses,
C*, and keys K, Sk, and Pk are erased. The output is C and stream {S, ω, M*}.

3.1.2. Verification Cycle

The verification cycle follows the same steps as the enrollment cycle. The release ofω
initiates the process, while {C, S, M*} are also needed. The replay of the CRP mechanism
retrieves the responses from ω and {C, S}. The responses allow the recovery of K, the
deciphering of Pk from M* with K, and the deciphering of C with Pk to retrieve F. Algorithm
5 is summarizing this protocol as shown below. A variation of this protocol utilizes a
message of authenticity M, instead of Pk, to generate ciphertext M* with K; where, in this
case, C is decrypted separately. F can remain secret; while the proof of authenticity of C can
be public, informing peers that C is valid.

Algorithm 5: Decrypt file F
1: Variable input data: {ω}, and {C, S, M*}
2: → Use Module 1: Generate a set of N responses with C, and {ω,S}:
• Static input data: Positive integers d, N, P, α, β

• Output data: the N, P-bit long, responses {r1, . . . , rN}
3: K← concatenate{r1, . . . , rN}
4: Pk← Decrypt(M*, K)
5: F← Decrypt(C, Pk)
6: Output: F, Pk

3.2. Example of Use Case in Distributed Networks

The schemes presented above in Section 3.1 benefit clients operating in a distributed
network [46–50]. In this example, suppose a client desires to allow independent parties
to verify the authenticity of a transaction contained in file F. The client keeps secret F and
discloses ciphertext C. The roles of the participating parties are defined as the following:

• Client: owns file F but pays the storage agent to store C for some duration [51].
• Agent: represents the client [52].
• Storage agent: paid by the client or the agent to store information [53].
• The data is public.
• Smart contract: The client’s rent is kept in escrow in the contract until the rental expires.

The smart contract is equipped to compute the proof of authenticity [54,55].

Axioms 2023, 12, 531 8 of 23

The client issues periodic challenges to check that the storage agent is faithful. If a
challenge fails, the smart contract refunds the rent to the client. Since the smart contract’s
state is always public, the contract cannot keep any secret data.

3.2.1. Initial Enrollment and Distribution of the Files

The client uses a CRP mechanism during an initial set up phase, as described in
Section 3.1, then distributes the information to the network. In most implementations,
a compact seed replaces the challenges, as described in Section 2. The client is either
equipped with the software needed to operate a CRP mechanism or employs a contract
agent to perform the confidential task. From Fi and nonceωi, the CRP mechanism generates
the ciphertext Ci and the file M◦i: {Si, M*i}. The stream M*i is the ciphertext encrypted
with ephemeral key K of the message of authentication Mi, which can be the public key
Mi = Pki needed for the DSA of Fi. An active participant such as an agent can take care of
the distribution of Ci and M◦i. In Figure 4, the distribution is the following:

• The smart contract has the technical capability to perform CRP mechanisms.
• The storage node keeps Ci and M◦i.
• The client keeps Fi andωi.

Axioms 2023, 12, x FOR PEER REVIEW 8 of 23

4: Pk ← Decrypt(M*, K)
5: F ← Decrypt(C, Pk)
6: Output: F, Pk

3.2. Example of Use Case in Distributed Networks
The schemes presented above in Section 3.1 benefit clients operating in a distributed

network [46–50]. In this example, suppose a client desires to allow independent parties to
verify the authenticity of a transaction contained in file F. The client keeps secret F and
discloses ciphertext C. The roles of the participating parties are defined as the following:
• Client: owns file F but pays the storage agent to store C for some duration [51].
• Agent: represents the client [52].
• Storage agent: paid by the client or the agent to store information [53].
• The data is public.
• Smart contract: The client’s rent is kept in escrow in the contract until the rental ex-

pires. The smart contract is equipped to compute the proof of authenticity [54,55].
The client issues periodic challenges to check that the storage agent is faithful. If a

challenge fails, the smart contract refunds the rent to the client. Since the smart contract’s
state is always public, the contract cannot keep any secret data.

3.2.1. Initial Enrollment and Distribution of the Files
The client uses a CRP mechanism during an initial set up phase, as described in Sec-

tion 3.1, then distributes the information to the network. In most implementations, a com-
pact seed replaces the challenges, as described in Section 2. The client is either equipped
with the software needed to operate a CRP mechanism or employs a contract agent to
perform the confidential task. From Fi and nonce ωi, the CRP mechanism generates the
ciphertext Ci and the file M°i: {Si, M*i}. The stream M*i is the ciphertext encrypted with
ephemeral key K of the message of authentication Mi, which can be the public key Mi =
Pki needed for the DSA of Fi. An active participant such as an agent can take care of the
distribution of Ci and M°i. In Figure 4, the distribution is the following:
• The smart contract has the technical capability to perform CRP mechanisms.
• The storage node keeps Ci and M°i.
• The client keeps Fi and ωi.

Figure 4. Block diagram of the enrollment cycle with CRP mechanism. The resulting data distributed
to the agent is Ci, the cipher text of Fi, and M◦i: {Si, M*i}, the encrypted information needed for
verification of authenticity. The client keeps Fi and nonceωi.

3.2.2. Verification in Distributed Networks

When the verification of the authenticity of Fi is required, the client communicates
ωi to the agent. The agent then coordinates the effort between the smart contract and the
storage node, executed in the protocol shown in Figure 5, which is summarized as follows:

• The smart contract, which is equipped with the CRP mechanism collectsωi, Ci, and
M◦i = {Si, M*i}

• The CRP mechanism has the information needed to decrypt Fi and run the DSA
verification with Pki.

Axioms 2023, 12, 531 9 of 23

Axioms 2023, 12, x FOR PEER REVIEW 9 of 23

Figure 4. Block diagram of the enrollment cycle with CRP mechanism. The resulting data distrib-
uted to the agent is Ci, the cipher text of Fi, and M°i: {Si, M*i}, the encrypted information needed for
verification of authenticity. The client keeps Fi and nonce ωi.

3.2.2. Verification in Distributed Networks
When the verification of the authenticity of Fi is required, the client communicates ωi

to the agent. The agent then coordinates the effort between the smart contract and the
storage node, executed in the protocol shown in Figure 5, which is summarized as follows:
• The smart contract, which is equipped with the CRP mechanism collects ωi, Ci, and

M°i = {Si, M*i}
• The CRP mechanism has the information needed to decrypt Fi and run the DSA ver-

ification with Pki.

Figure 5. Block diagram of a validation cycle in a distributed network. The agent collects the infor-
mation needed for the smart contract to decrypt Fi: 𝜔i and the stream M°i: {Si, M*i}. This allows the
recovery of Fi, Mi to verify authenticity with DSA.

A variation of the protocol replaces Pki by a message of authenticity Mi such as:
“Yes, I (client X), am confirming the authenticity of ciphertext Ci ”.
This variation can be useful if the client desires to protect file Fi. The decryption of Ci

can be performed separately, while outside the open network. A separate arrangement is
then needed to share Pki; for example, through a public key infrastructure (PKI).

3.3. Security Analysis in Distributed Networks
The methods for verifying authenticity, as presented here, are based on the handling

of several independent elements: File F, Ciphertext C, nonce 𝜔 and the stream M°. The
client may restrict any of these streams while distributing the other three elements. The
possibility matrix is shown in Table 1.

Table 1. Methods to organize a collaborative network.

CASE
File

F
Ciphertext

C
Nonce 𝝎

Cipher Text
M°: {S; M*}

What Is
M?

1 Client Storage Client Storage M = Pk
2 Client Storage Client Storage M = message

Figure 5. Block diagram of a validation cycle in a distributed network. The agent collects the
information needed for the smart contract to decrypt Fi: ωi and the stream M◦i: {Si, M*i}. This allows
the recovery of Fi, Mi to verify authenticity with DSA.

A variation of the protocol replaces Pki by a message of authenticity Mi such as:

“Yes, I (client X), am confirming the authenticity of ciphertext Ci”.

This variation can be useful if the client desires to protect file Fi. The decryption of Ci
can be performed separately, while outside the open network. A separate arrangement is
then needed to share Pki; for example, through a public key infrastructure (PKI).

3.3. Security Analysis in Distributed Networks

The methods for verifying authenticity, as presented here, are based on the handling
of several independent elements: File F, Ciphertext C, nonce ω and the stream M◦. The
client may restrict any of these streams while distributing the other three elements. The
possibility matrix is shown in Table 1.

Table 1. Methods to organize a collaborative network.

CASE File
F

Ciphertext
C

Nonce
ω

Cipher Text
M◦: {S; M*}

What Is
M?

1 Client Storage Client Storage M = Pk

2 Client Storage Client Storage M = message

3 Client Client Storage Storage M = Pk

4 Storage Storage Client Storage M = message

5 Storage Storage Storage Client M = message

The respective value of each case can be summarized as follows:

• Case 1 was discussed in Section 3.2.2 The client keeps F andω secret after enrollment
and then discloses both during verification. Such a method is valuable since the entire
chain of information is obfuscated before validation. After validation, both C1 and F1
are public information, and the use of the DSA can further enhance the transparency
of the protocol.

• Case 2 is a variation of Case 1 where M is a message of authenticity rather than a public
key. The client can only discloseω during verification, offering some homomorphic

Axioms 2023, 12, 531 10 of 23

capabilities to the scheme as the open protocols verify the authenticity of ciphertext C
without openly disclosing F.

• Case 3: After enrollment, the client keeps both F and C such that the level of obfuscation
is also high. During validation, the client discloses both so the smart agent can verify
authenticity. This method is interesting since the client cannot lie by changing F and C
after the fact.

• Case 4: After enrollment, the client only keepsω and releases both unencrypted and
encrypted files. The release of the nonce enables a full verification of authenticity to
include DSA. The nonce is then used as a one-time public key.

• Case 5: This is a variation of Case 4 in which only M◦ is kept by the client, thus
utilizing M◦ as a one-time public key.

Discussion: The first two cases offer both high levels of security and transparency since
file F is kept secret after enrollment, while ciphertext C is public information. The client
could be accused of modifying the file, if it is altered; therefore, the protocol offers non-
alterability and non-repudiation. In addition to the proof of authenticity of the message,
by releasing the nonce, the client also provides a form of authentication. In both cases,
the storage node is keeping files that can be decrypted on-demand, acting as a repository
of critical information. Examples of information are medical files, financial transactions,
movies, games, and/or real estate transactions.

The second case offers some homomorphic properties since the encrypted file can be
authenticated without knowing the content of the file. The decryption of the files can be
performed separately and secretly in a transaction between the client and a third party. The
client may, for example, secretly communicate the cryptographic key needed to retrieve
the file. An example of a use case could be in the handling of medical files. The doctor
keeps the nonce, and the key needed to decrypt the file, while the cipher text and encrypted
message of authenticity are kept by a storage node. To allow a second doctor to access
the file, the doctor openly transmits the nonce, which will confirm the authenticity of the
ciphertext, then secretly transmits the key deciphering the file. That way, the doctors are
not required to store the files on their server to retrieve the information as needed.

The suggested protocols are relatively well protected against attack vectors such as
replays, man-in-the-middle, and side channel analysis. New nonces, key pairs Sk–Pk, and
seeds are generated for each file and used only once. After a proof of authenticity cycle,
the entire chain of information is openly distributed: the file, the ciphertext, nonce, seeds,
public key, and message of authenticity. Even the knowledge of Sk, the private key, becomes
irrelevant. This is a departure from many other DSA schemes used in cryptology in which
the leak of the secret key is catastrophic.

A remaining vulnerability of the protocol presented in the first two cases is the leak of
nonce ω. Adversaries are then enabled to decrypt the files, which defeats the purpose of
the protocol. A potential remedy is to use Multi-Factor Authentication (MFA). The nonce
can be XORed with a password before storage by the client. During the verification cycle,
the client shall XOR it again with the password to retrieve the nonce. Another option is to
use the additional layer of security presented below in Section 4.

4. Protocols Protecting Terminal Devices in Zero-Trust Networks

As discussed in Section 3 for distributed networks, the application of interest in this
section is also based on CRP mechanisms; however, the constraints are different. The
protocols cannot rely on third party validations and the information is restricted to a small
group of participants. One of the objectives is to enable a controlling party to drive the
deciphering of the files stored in a terminal device through a zero-trust network. The
transfer of information from the controlling party to the device is obfuscated with heavy
electromagnetic noise, either due to the fact that the signals are weak (unintentional) or to
protect the device against a variety of attacks, and channel analysis (intentional).

Axioms 2023, 12, 531 11 of 23

4.1. Description of the Protocols with CRP Mechanisms

Starting with the CRP mechanism as described in Section 2.2 randomly pick ephemeral
keys, and generate an orderly subset of the sequence of responses KR in which obfuscating
noise can be injected. The enrollment cycle should be completed in a secure environment
(before entering the zero-trust network). During the validation cycles that are occurring
in zero-trust networks, the terminal device can decrypt its files without ECC in order to
reduce leaks of information while conserving computing power.

4.1.1. Enrollment Cycle

The input data in Algorithm 6 shown below are: d, N, P, and prime numbers α, β.
The ephemeral key K is picked randomly. K is used to select the orderly sequence of f
responses KR:

{
r′1, . . . , r′ f

}
from the full set of responses {r1, . . . , rN} by skipping the

N − f positions with a state of 0. KR is kept secret by the controlling party. Let Kc be the
stream of the nonce {ω}, the seed S, and the ciphertext M*. Both C and Kc are distributed
to the terminal device. All other information and cryptographic keys are erased, namely
{C*, Sk, Pk, K} and the N-f responses with a state of 0.

Algorithm 6: Enrollment cycle for file F, generate subkeys Kc & Kr
1: Input data: Some file F
2: Nonce {ω}, stream {S}, seed {L}← random number generator
3: Generate ephemeral public-private key pair {Pk, Sk} from L (ex: PQC algorithm)
4: C← Encrypt(F, Sk)
5: M← Pk
6: → Use Module 1: Generate a set of N responses with C, and {ω,S}:
• Static input data: Positive integers d, N, P, α, β

• Output data: the N, P-bit long, responses {r1, . . . , rN}
7: → Use Module 2: Generate a subset of responses from M = Pk and {r1, . . . , rN}:
• Key K with f states of “1”← random number generator Filter the f responses

{
r′1, . . . , r′ f

}
• M*← Encrypt(M, K) Erase: {Sk, Pk, K}

8: Let subkey Kr be the f, P-bit long, responses
{

r′1, . . . , r′ f
}

9: Let subkey Kc be the streams {S,ω, M*}

4.1.2. Verification Cycle

The terminal device can verify the authenticity of C by recovering Pk with Kr and Kc,
in which Kr:

{
r′1, . . . , r′ j, . . . , r′ f

}
and Kc: {S, ω, M*}.

• The first part of Algorithm 7 shown below is a replay of the enrollment cycle to
generate the responses {r1, . . . , ri, . . . , rN} that each have a length equal to P-bit.

• The key K is recovered by comparing the full sequence of responses with the subset,
as shown in module 4.

The injection of bad bits in the subset of the response, a process that can also be called
“noise injection”, has no effect on the outcome of the protocol provided the noise level is
below the threshold T that can disturb the recovery of K.

Axioms 2023, 12, 531 12 of 23

Algorithm 7: Decrypt file F with subkey Kc and noisy subkey Kr
0: Up to T bad bits are injected in Kr
1: Variable input data: C, Kc and the noisy Kr
2: → Use Module 1: Generate a set of N responses with C, and {ω,S}:
• Static input data: Positive integers d, N, P, α, β

• Output data: the N, P-bit long, responses {r1, . . . , ri, . . . , rN}
3: →Module 4: Decrypt M from M* and the f noisy responses

{
r′1, . . . , r′ j, . . . , r′ f

}
, j ∈{1, P}:

3.1: Enter both sets
{

r′1, . . . , r′ j, . . . , r′ f
}

, {r1, . . . , ri, . . . , rN} , and T
3.2: j = 1, i = 1
3.3: While i < N + 1:

Measure hamming distance H(r′ j, ri):
• If H(r′j, ri) ≤ T: ki = 1; increment i, j by 1
• Else: ki = 0; increment i by 1

3.4: (M = Pk)← Decrypt(M*, K)
4: F← Decrypt(C, Pk)
6: Output: F, Pk

The example shown in Tables 2 and 3 illustrates how the scheme operates. With the
sequence {r1, . . . , r8} and key K {0,1,1,0,1,0,0,1}, Kr is {r′1 = r2, r′2 = r3, r′3 = r5, r′4 = r8}.
The key K is recovered by comparing the Kr and the full sequence.

Table 2. Generation of an orderly sequence of responses from K.

Responses r1 r2 r3 r4 r5 r6 r7 r8

Key K 0 1 1 0 1 0 0 1

Subset Kr - r′1 = r2 r′2 = r3 - r′3 = r5 - - r′4 = r8

Table 3. Key recovery from the orderly sequence of responses.

Subset Kr r′1 r′2 r′3 r′4

Responses r1 r2 = r′1 r3 = r′2 r4 r5 = r′3 r6 r7 r8 = r′4

Key K 0 1 1 0 1 0 0 1

4.2. Example of Use Case in Zero-Trust Networks

The protocol presented in Section 4.1 is applied to protect autonomous vehicles op-
erating in a zero-trust network with poor signal quality [56–60]. For example, the vehicle
contains a set of encrypted files with the instructions and software revisions required to
react to certain circumstances. The set of keys required to decrypt these files should not be
stored in the vehicle for security reasons; therefore, a server transmits them through the
open network as requested. The latencies of the suggested protocols must be small for near
real-time operations. The use of standardized cryptographic algorithms is preferred.

4.2.1. Initial Set Up—Enrollment

The enrollment cycle performed in a secure environment is summarized in Figure 6.
The CRP processing, as described in Section 4.1, enables the encryption of each file with
a secret key Sk, the generation of the two sub-keys Kc and Kr required to find the public
key Pk. Let M* be the encrypted Pk with ephemeral key K. Let S be the seed randomly
picked to generate the challenges. Let Kc be the stream { S, ω, M*}. Let Kr be the subset of
responses computed from the full set and K.

Axioms 2023, 12, 531 13 of 23

Axioms 2023, 12, x FOR PEER REVIEW 13 of 23

The enrollment cycle performed in a secure environment is summarized in Figure 6.
The CRP processing, as described in Section 4.1, enables the encryption of each file with a
secret key Sk, the generation of the two sub-keys Kc and Kr required to find the public
key Pk. Let M* be the encrypted Pk with ephemeral key K. Let S be the seed randomly
picked to generate the challenges. Let Kc be the stream { S, 𝜔, M*}. Let Kr be the subset of
responses computed from the full set and K.

After completion of the enrollment cycles, the server restricts all files Fs and associ-
ated subkeys Kr, while the autonomous vehicle restricts the ciphertexts C and subkeys Kc.

Figure 6. Block diagram of the enrollment cycle. From file F1, two keys are computed by the CRP
processing element: Kr)1 from the responses and Kc)1 from the challenges. F1 and Kr)1 are restricted
by the server while C1 and Kc)1 are distributed to the terminal device.

4.2.2. Verification of Authenticity—Deciphering the Files
If the vehicle encounters a problem, the engineers working remotely dictate that the

vehicle should use file Fi; thus, they transmit Kr)i through the network (see Figure 7).

Figure 6. Block diagram of the enrollment cycle. From file F1, two keys are computed by the CRP
processing element: Kr)1 from the responses and Kc)1 from the challenges. F1 and Kr)1 are restricted
by the server while C1 and Kc)1 are distributed to the terminal device.

After completion of the enrollment cycles, the server restricts all files Fs and associated
subkeys Kr, while the autonomous vehicle restricts the ciphertexts C and subkeys Kc.

4.2.2. Verification of Authenticity—Deciphering the Files

If the vehicle encounters a problem, the engineers working remotely dictate that the
vehicle should use file Fi; thus, they transmit Kr)i through the network (see Figure 7).

Axioms 2023, 12, x FOR PEER REVIEW 13 of 23

The enrollment cycle performed in a secure environment is summarized in Figure 6.
The CRP processing, as described in Section 4.1, enables the encryption of each file with a
secret key Sk, the generation of the two sub-keys Kc and Kr required to find the public
key Pk. Let M* be the encrypted Pk with ephemeral key K. Let S be the seed randomly
picked to generate the challenges. Let Kc be the stream { S, 𝜔, M*}. Let Kr be the subset of
responses computed from the full set and K.

After completion of the enrollment cycles, the server restricts all files Fs and associ-
ated subkeys Kr, while the autonomous vehicle restricts the ciphertexts C and subkeys Kc.

Figure 6. Block diagram of the enrollment cycle. From file F1, two keys are computed by the CRP
processing element: Kr)1 from the responses and Kc)1 from the challenges. F1 and Kr)1 are restricted
by the server while C1 and Kc)1 are distributed to the terminal device.

4.2.2. Verification of Authenticity—Deciphering the Files
If the vehicle encounters a problem, the engineers working remotely dictate that the

vehicle should use file Fi; thus, they transmit Kr)i through the network (see Figure 7).

Figure 7. Block diagram of the recovery cycle. The server transmits Kr)1 to the device in the noisy
network. The CRP processing element of the terminal device is retrieving F1 and the public key Pk1

from keys Kr)1 and Kc)1. Verification of authenticity of F1 is enabled.

Axioms 2023, 12, 531 14 of 23

Assuming that the rates of collisions between 100-bit long responses are neglige-
able, the vehicle can quickly determine which file to retrieve by testing a few responses.
The protocol presented in Section 4.1 is able to manage poor signals and heavy-injected
electromagnetic noises in the subkey Kr)i to retrieve Fi utilizing the following process:

• Kc)i: {Si, ωi, M*i} enables the generation of the full set of responses from the ciphertext
Ci, and the CRP mechanism.

• Kr)i discloses the subset of responses.
• Ephemeral key Ki is retrieved by comparing both sets of responses.
• Public key Pki is decrypted from M*i with key Ki.
• File Fi is decrypted from Ci with public key Pki.

If required, the noise can be directly injected into Kr by the server with a random
number generator. The autonomous vehicle can also be equipped with the system to
emit obfuscating noise during communication with the server, which has the potential
to mitigate some side channel attacks. Having noisy responses can increase the one-
wayness of the CRP mechanism by obfuscating the cryptoanalysis after a verification cycle.
Without such a feature, the crypto-analyst is empowered to keep track of the CRPs for
future analysis.

4.3. Security Analysis in Zero-Trust Networks

The protocols using a subset of responses, as presented above, require additional
protections to mitigate certain vulnerabilities. A discussion of the selected suggested
mitigations is discussed next. Other strategies are part of our proposed future work.

4.3.1. Loss of Both Kr and the Information Stored in the Terminal Device

A poor environment for this protocol is when Kr is intercepted as well as the content
of the terminal device; hence, the opponent would then be enabled to retrieve the files. The
structure of subkey Kc)i: {Si, ωi, M*i} can enable MFA:

• MFA on the seed. The terminal device XORed the Si with a password before storing
it, then XORed it again during the recovery cycle. This can obfuscate the challenges
generation process.

• MFA on the nonce: Rather than applying the MFA on the seed, the XORing can be
performed on the nonce. This obfuscates the file used in the CRP mechanism.

• If the terminal device is driven by an operator, then biometry can be added.
• Additional protection of the public key Pk. Rather than having M* being the ciphertext

of the public key Pk; the message M decrypted from M* during recovery does not
directly disclose Pk. The recovery of Pk from M could also use MFA, or a separate
code transmitted by the controlling server through a separate channel.

4.3.2. Verifying the Index of the Confidential File

Opening the wrong file may not be acceptable. To mitigate errors, an index can be
added to the ephemeral key. The protocol is as follows:

• During enrollment, the index of 12 bits (when 4000 files are stored) is added in the
front of each ephemeral key. The number of responses is extended to 12 + N. The
number of responses of the subsets also increased, accordingly, by 12.

• The terminal device stores the 12 additional responses in a look-up table.
• During recovery, the first 12 responses of the subset are used to confirm the index from

the first 12 responses pointing to the right ciphertext–Kc pair to decrypt.

During the recovery cycle, such a method can quickly verify the matching index. The
key and the index are then linked to each other.

4.3.3. Replays, Man-in-the-Middle, and Side Channel Analysis

Both replays and the man-in-the-middle attack disturb normal operations and should
be mitigated. The opponents intercept several subkeys Kr thus preventing the terminal

Axioms 2023, 12, 531 15 of 23

device from receiving them. Subsequently, the opponent sends these subkeys, but not
necessarily in the right order, which could have a catastrophic impact. The mitigation
of such attacks add a feedback loop to inform the controlling server that the signal was
well received by the terminal device at the right time. Adding a code at the end of each
file that the terminal device has to send back to the controlling server is an effective
implementation. Protection against the side channel analysis should be implemented. The
protocol has several advantages from that standpoint: the noise injected in the network
during the transmission of Kr can disturb the side channel analysis and the subkeys are only
used once.

5. Statistical Analysis of the Protocols Based on Subsets of Responses and ECC

Practical issues are expected in the implementation of the methods described above in
Section 4 since the noise injection could also generate erroneous bits in the cryptographic
keys. One solution is to tolerate an approximate matching between the responses of the
orderly subset generated during enrollment and the responses generated during verification.
However, if the threshold of acceptance is too high, the probability of having two randomly
chosen responses matching can also be too high. The term commonly used to describe such
unwelcome matches is “collision” [61,62]. In order to optimize the protocols, we developed
a predictive modeling of these collisions. We also developed error management schemes
able to process small residual erratic bits.

5.1. Statistical Predictive Model for Collisions

The recovery of the file, as outlined in Algorithm 6, assumes that the noise injected in
the P-bit long responses creates a BER lower than 25%, an arbitrary number that can be
optimized. The number of erratic bits t is bounded below the threshold T, which in this
case is given by T = 0.25× P. If the threshold is too high, then collisions between the N
responses become a source of errors during the retrieval of key K. A collision occurs when
two randomly picked P-long responses ra and rb share at least T bits with each other. We are
assuming that all responses follow a binomial distribution; one in which q, the probability
to obtain a state “0”, equals the probability to obtain a state “1” (q = 0.5). We must ensure
that the probabilities of having a collision Ψ(P,T,q) between the responses of the orderly
subset and a randomly picked response are acceptably low. Thus, we developed a model
to optimize the protocol that focuses on three variables of Algorithm 6: the rate of bad bits
injected in the subset of responses, the number of bits P of the responses, and the number
of bits of threshold T. This mode is created as follows:

• Assume that we have two P-bit long streams of responses Ra and Rb:

Ra: {ra,1, . . . , ra,P} ; Rb:
{

rb,1, . . . , rb,P
}

• Each stream follows a binomial distribution.

The parameter q is the probability q to have a 1.

• The two streams are XORed, bit by bit:

{ra,1⊕rb,1, . . . , ra,P⊕rb,P
}
← {ra,1, . . . , ra,P}⊕

{
rb,1, . . . , rb,P

}
(3)

• The resulting stream also follows a binomial distribution with q = 0.5.
• The hamming distance H(Ra,Rb) between Ra and Rb is given by:

H(Ra, Rb) = (ra,1 ⊕rb,1) + . . . + (ra,P ⊕rb,)

)
(4)

• There is a collision when the hamming distance between ra and rb is: H(ra,rb) ≤ T.
• The rate of collisions is:

Ψ(P, T, q) = ∑T
t=0 [

(
P
t

)
qt(1− q)P−t] (5)

Axioms 2023, 12, 531 16 of 23

The plot shown in Figure 8 was generated using T/P in the x-axis, and Ψ(P,T,q) in
the y-axis. T/P varies between 0 and 40%, and Ψ(P,T,q) varies from 10−7 and 1. In our
experiment, we measured the best fit for q = 0.5 since the distributions are almost perfectly
binomial.

Axioms 2023, 12, x FOR PEER REVIEW 16 of 23

H(Ra,Rb) = (𝑟 , ⊕𝑟 ,) + ⋯ + (𝑟 , ⊕𝑟 ,)) (4)

• There is a collision when the hamming distance between ra and rb is: H(ra,rb) ≤ T.
• The rate of collisions is:

Ψ(P,T,q) = ∑ q (1 − q)] (5)

The plot shown in Figure 8 was generated using T/P in the x-axis, and Ψ(P,T,q) in the
y-axis. T/P varies between 0 and 40%, and Ψ(P,T,q) varies from 10−7 and 1. In our experi-
ment, we measured the best fit for 𝑞 = 0.5 since the distributions are almost perfectly bi-
nomial.

If we assume that there are no responses out of the f responses having the BER be-
tween enrollment and key recovery greater than the threshold T, the expected BER (E(K)
in key K after recovery is expected to be given by:

E(K) ≈ × 𝛾 Ψ(P,T,q) ≈ 3 Ψ(P,T,q) (6)

Where γ is the number of times each response is randomly tested in the recovery cycle.
As shown in Section 5.3.3, we used γ = 6.
If we assume that the BER of the noise injected in the responses are lower than 𝑇 = 0.25,
then an example of predictive use of the model for a 256-bit long key is as follows:
o 𝑃 = 40 → E(K) ≈ 1.2 × 10
o 𝑃 = 60 → E(K) ≈ 6.7 × 10
o 𝑃 = 80 → E(K) ≈ 4.3 × 10
o 𝑃 = 100 → E(K) ≈ 2.8 × 10

The BERs are exponentially reduced by increasing the length P of the responses. The
light error correcting schemes, as presented below, quickly increase if the BERs are creat-
ing more than one bad bit in a 256-bit long key, which corresponds to a BER of 4 x10 .
This model predicts that 𝑃 = 80 is acceptable and that 𝑃 = 100 is a better operating
point.

Figure 8. Modeling the rate of collisions as a function of threshold T, and P. To minimize collisions,
T/P should not be set too high; however, the ratio should be set high enough to avoid errors due to
the noise injection in the orderly subset of responses.

If we assume that there are no responses out of the f responses having the BER between
enrollment and key recovery greater than the threshold T, the expected BER (E(K) in key K
after recovery is expected to be given by:

E(K) ≈ f
256
× γ Ψ(P, T, q) ≈ 3 Ψ(P, T, q) (6)

where γ is the number of times each response is randomly tested in the recovery cycle. As
shown in Section 5.3.3, we used γ = 6.

If we assume that the BER of the noise injected in the responses are lower than T = 0.25,
then an example of predictive use of the model for a 256-bit long key is as follows:

P = 40→ E(K) ≈ 1.2× 10−3

P = 60→ E(K) ≈ 6.7× 10−5

P = 80→ E(K) ≈ 4.3× 10−6

P = 100→ E(K) ≈ 2.8× 10−7

The BERs are exponentially reduced by increasing the length P of the responses. The
light error correcting schemes, as presented below, quickly increase if the BERs are creating
more than one bad bit in a 256-bit long key, which corresponds to a BER of 4× 10−4. This
model predicts that P = 80 is acceptable and that P = 100 is a better operating point.

Axioms 2023, 12, 531 17 of 23

Axioms 2023, 12, x FOR PEER REVIEW 17 of 23

Figure 8. Modeling the rate of collisions as a function of threshold T, and P. To minimize collisions,
T/P should not be set too high; however, the ratio should be set high enough to avoid errors due to
the noise injection in the orderly subset of responses.

5.2. Model for Heavy Noise Injections
The information presented in Figure 8 shows that responses in the range of 10 to 100

bits are too small to handle a noise injection of more than 30% erratic bits. A similar anal-
ysis is shown in Figure 9 with responses in the 128- to 512-bit range, and 𝑞 = 0.5. An ex-
ample of the predictive use yields the following results:
o 𝑃 = 128 and 𝑇 = 30% → E(K) ≈ 3.5 × 10 ;
o 𝑃 = 256 and 𝑇 = 35% → E(K) ≈ 9.1 × 10 ;
o 𝑃 = 512 and 𝑇 = 40% → E(K) ≈ 2.5 × 10 .

Such bit values of the error rates in K, which are in the part per million range (ppm),
are widely acceptable for most applications. However, such an improvement introduces
a negative impact on the latencies of the protocol, which are approximately proportional
to the length of the responses. The bit error rates in the 35% range are large; thus, the
penalty on latencies remains reasonable.

Figure 9. Modeling the rate of collisions with longer responses. With 512-bit long responses, noise
injection techniques containing BERs as high as 40% in the subset of responses are considered since
they only induce small rates of collisions (on the order of 10).

5.3. Error Management in the Cryptographic Keys
Mainstream ECC is difficult to implement in this approach since the data helpers

needed to correct the key K are also affected by the noise injection. Thus, data helpers for
the data helpers are called for, not an easy problem to resolve at high error rates. There-
fore, we are proposing, in this section, several light error management schemes that can
tolerate the residual errors created in K in the range of 1 to 3 bad bits per each 256-bit long
key. With 𝑇 = 0.35 and 𝑃 = 80, 35% BERs in the responses generate 𝐸(𝐾) ≈ 3.0 x 10
BERs in the keys, which represents less than one bad bit per 256-bit long key.

Figure 9. Modeling the rate of collisions with longer responses. With 512-bit long responses, noise
injection techniques containing BERs as high as 40% in the subset of responses are considered since
they only induce small rates of collisions (on the order of 10−6).

5.2. Model for Heavy Noise Injections

The information presented in Figure 8 shows that responses in the range of 10 to
100 bits are too small to handle a noise injection of more than 30% erratic bits. A similar
analysis is shown in Figure 9 with responses in the 128- to 512-bit range, and q = 0.5. An
example of the predictive use yields the following results:

P = 128 and T = 30%→ E(K) ≈ 3.5× 10−6;
P = 256 and T = 35%→ E(K) ≈ 9.1× 10−7;
P = 512 and T = 40%→ E(K) ≈ 2.5× 10−6.

Such bit values of the error rates in K, which are in the part per million range (ppm),
are widely acceptable for most applications. However, such an improvement introduces a
negative impact on the latencies of the protocol, which are approximately proportional to
the length of the responses. The bit error rates in the 35% range are large; thus, the penalty
on latencies remains reasonable.

5.3. Error Management in the Cryptographic Keys

Mainstream ECC is difficult to implement in this approach since the data helpers
needed to correct the key K are also affected by the noise injection. Thus, data helpers for
the data helpers are called for, not an easy problem to resolve at high error rates. Therefore,
we are proposing, in this section, several light error management schemes that can tolerate
the residual errors created in K in the range of 1 to 3 bad bits per each 256-bit long key.
With T = 0.35 and P = 80, 35% BERs in the responses generate E(K)≈ 3.0× 10−4 BERs in
the keys, which represents less than one bad bit per 256-bit long key.

5.3.1. Error Management with Response-Based Cryptography

The Response-Based Cryptographic (RBC) is a search mechanism allowing the recov-
ery of a key when the ciphertext of the key is known [63,64]. In the protocol of Algorithms

Axioms 2023, 12, 531 18 of 23

6 and 7 with the subset of responses, the key K decrypts M* (the ciphertext of the key Pk)
followed by the decryption of C and the ciphertext of the file F. This can be written as:

F = Decrypt(C, Pk) = Decrypt(C, Decrypt (M∗ , K)) (7)

[Decrypt(C, Pk): decrypt “C” with key “Pk”]
Algorithm 8 verifies authenticity and decrypts Pk and F, see as follows:

Algorithm 8: Managing erratic key K with RBC

1: Retrieve K with CRP mechanism and from file C
2: x ← 0
3: Find all keys Kn, n ∈

{
1, (N

x)
}

, with hamming distance of x from K
4: Decrypt all files Fn = Decrypt(C, Decrypt (M∗,Kn))

• If at least one of files Fn is readable; Pk = Decrypt(M∗,Kn); F = Fn = Decrypt(C, Pk)
• Else:

If x < 3: Increment x by 1 and go back to step 3
If x = 3: Try again (go back to 1)

Using our computing system, we experimentally measured the throughput of the
RBC at 2.0× 108 cycles per second for AES and at 2.0× 106 cycles/second for CRYSTALS-
Dilithium. The code tested for Dilithium is freely available online, while AES is imple-
mented in hardware within the computing element of our system [65]. The latencies to
retrieve F through Algorithm 7 are listed in Table 4. The latencies to retrieve F are accept-
able with AES, while managing 3 bad bits with Dilithium is slow. We anticipate that the
hardware implementations of Dilithium will be available in the near future.

Table 4. Latencies to verify authenticity with RBC.

Number of Errors 0 1 2 3

AES—Latencies (s) 10−8 2.5× 10−6 3.2× 10−4 2.2× 10−3

Dilithium—Latencies (s) 10−5 2.5× 10−3 0.3 27

5.3.2. Error Management of Collisions

We developed and analyzed a method to experimentally detect collisions. The ap-
proach is based on the observation that when a collision occurs between a response from
the subset and a response from the full set positioned in one of the states of “0” of K, that
there is also a match with a response positioned in one of the states of “1” of K; this response
from the subset then contains multiple matches.

Conversely, without collision, each response from the subset has one (and only one)
match in the full set of responses. After experimentally finding the ρ positions of the subset
with multiple matches, we conclude that all other positions (the number of which is f-ρ)
are error-free. This significantly limits how many possible keys have to be tested in a
methodology similar to that described by the RBC. For example: if one response of the
subset sees two matches, then the first of the two can be a state of “1”: while the second
one is a state of “0” (and vice-versa). This leaves only two possible keys, which is quickly
validated by computing F with Equation (7). If ρ responses from the subset create one
collision each, then the number of possible keys per response is 2. This results in total 2ρ

possible keys required to be checked; a lower value than the number of cases checked by
the brute force RBC for the same number of errors. The latencies for 256-bit long keys K are
listed in Table 5.

Axioms 2023, 12, 531 19 of 23

Table 5. Latencies to find the correct key K with collision detection.

Number of Collisions ρ 0 5 10 20

AES—Latencies (s) 1.0× 10−8 3.2× 10−7 1.0× 10−4 1.0× 10−2

Dilithium—Latencies (s) 1.0× 10−5 3.2× 10−5 1.0× 10−2 10

5.3.3. Failure to Detect Matching Responses

Consider the case where the errors injected in the responses of the subset are greater
than threshold T. In this case, ρ responses see no matches. This type of failure creates only
a limited number of possible keys K. The positions in the sequence of orderly response
matching with the responses-located positions (ρ-1) and (ρ-2) are known, and only a small
number of positions with state “0” are between the two. The number of possible keys is
then also small, quickly validated with Equation (7). The method to handle the collisions
and failures to detect matching responses is described below in Algorithm 9:

• For each of the responses of the subset, at least γ0 successive responses of the full set
are tested for a potential match. Assume that key K has been tested to have no more
than γ0 successive 0s. This property must be validated during the random pick of K.
If K has more than γ0 successive 0s, then the key can be modified by inserting a few 1s
to be sure that the condition is fulfilled. We picked γ0 = 6 in our implementation.

• Detect the responses of the subset with either zero, one, or more than one matches
with the responses of the full set of responses.

• List all possible keys.
• Verify the authenticity of F with all possible keys with Equation (7) of Section 5.3.1.

Algorithm 9: detecting and correcting errors during recovery of K

1: Enter the subset of response {r′ 1, . . . , r′ j, . . . , r′f}, the set {r1, . . . , ri, . . . , rN}, γ0 and T
2: Start with j = 1, i = 1, and γ = γ0
3: While i < N + 1:

Measure hamming distance H(r′ j, ri+k) for all responses ri+k with k ∈ {0,γ− 1 }

• If H(r′ j, ri+k) ≤T for all γ comparisons: Increment i, j by 1, γ = 2γ0 − 1

[comment: to record that r′j has zero match]

• If H(r′ j, ri+k) >T for only one position: Increment j by 1, i = i + k + 1, γ = 2γ0

[comment: to record that position (i+k) is matching, and that r′j has only one match]

• If H(r′ j, ri+k) >T for more than one position:

Find the position with the smallest number k = kmin, and with the largest
k = kmax

Increment j by 1, i = i + kmin + 1, γ = γ0 + (kmax − kmin)

[comment: to record the list of all positions (i+k) matching with r′j]
4: Find the correct key K
[comments: The positions r′j with only one matching response are considered correct. The
positions r′j with zero match are caused by a failure to find the matching response. The
positions r′j with two matching responses have at least 1 collision]

4.1: List all possible keys Kn from the analysis
4.2: Decrypt all files Fn = Decrypt(C, Decrypt (M∗,Kn))
Find readable file F = Fn; then Pk = Decrypt(M∗,Kn)

Such a combined method will fail when both collision and the failure to detect occurs
within the same response of the subset. When the BERs are in the 10−3 range, the probability
of such an event is in the 10−6 range. In this configuration, the response in question matches
with one, and only one, response of the full set of responses, as the key is unable to detect
errors. One solution is to perform a brute force RBC search and in case of a failure to recover
K occurs, request a new subset of response and retry.

Axioms 2023, 12, 531 20 of 23

6. Conclusions and Future Work

The suggested CRP mechanisms are directly using the digital files that must be pro-
tected and also their associated ciphertexts to generate ephemeral one-time use crypto-
graphic keys. In these mechanisms, similarly with tracking blockchains, the digital files
are hashed to be unique for non-repudiable and non-alterable operations. Two actual
situations were discussed: (i) the encryption with proof of authenticity of the digital files
distributed in storage nodes and (ii) the protection of the files kept in devices operating in
zero-trust networks.

• In distributed networks, client devices provide the data needed for verification to
agents driving smart contracts and storage nodes, the proposed protocols balance both
security and transparency.

• In zero-trust networks, the sole priority is to enhance security and to protect the
terminal devices. We developed a protocol allowing the injection of obfuscating noise
in the keys transmitted by the controlling server to the exposed terminal device. BERS
in the 25% range do not prevent the noisy key from decrypting the digital files stored
in the device. To eliminate residual mismatches and generate error-free cryptographic
keys, we developed and tested error management schemes to replace complex ECC,
fuzzy extractors, and data helpers.

The continuation of this work will implement the algorithms for various applications
to optimize security, reduce latencies, and add features specific to each application. We
intend to perform an optimization with some of the following multi-factors:

• Length d of the digital file C* that is used for the CRP mechanism. Longer files
are desirable to enhance randomness and minimize collisions. Excessive lengths
negatively impact latencies.

• Number N of challenge–response pairs, and length P of each response. For the subset
of response protocol, N = 256 or more is needed, and P has to be sufficiently long to
avoid collisions, but not so long as to increase latencies.

• The acceptable BERs shall be injected in the subset of responses and threshold T shall
be set at an acceptable level for the determination of a match.

In addition to the experimental work, we are currently developing a comprehensive
multi-variate predictive tool. Additional attack vectors are also being investigated with
various methods to inject noise and disturb the protocol under consideration. Lastly, the
quality of true random number generation (TRNG) is critical to the levels of security
of the suggested protocols as well as the actual randomness of the resulting streams of
responses. We are performing statistically valid experiments to enable the quantification of
randomness with tools developed by NIST, DieHarder, TestU01, and others.

Author Contributions: Conceptualization, B.C., M.H. and J.H.; methodology, B.C., M.H. and J.H.;
software, B.C., C.P., M.H. and J.H.; validation, B.C.; formal analysis, B.C.; investigation, B.C.; resources,
B.C.; data curation, B.C.; writing—original draft preparation, B.C.; writing—review and editing,
B.C.; funding acquisition, B.C. All authors have read and agreed to the published version of the
manuscript.

Funding: Research was sponsored by the Army Research Laboratory and was accomplished under
Cooperative Agreement Number W911NF-23-2-0014. The views and conclusions contained in
this document are those of the authors and should not be interpreted as representing the official
policies, either expressed or implied, of the Army Research Laboratory or the U.S. Government.
The U.S. Government is authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation herein.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Axioms 2023, 12, 531 21 of 23

Abbreviations
List of acronyms used in this paper:

Acronym Definition
AES Advanced Encryption Standard
BER Bit Error Rate
CRA Challenge Response Authorization
CRP Challenge Response Pair
CRYSTALS Cryptographic Suite for Algebraic Lattices
DSA Digital Signature Algorithm
ECC Error Correcting Code
MFA Multi-Factor Authentication
NIST National Institute of Standards and Technology
OSR Orderly Subset of Responses
PKI Public Key Infrastructure
PQC Post Quantum Cryptography
PUF Physical Unclonable Function
RBC Response Based Cryptography
SHA Standard Hash Algorithm
SHAKE SHA algorithm and Keccack
TRNG True Random Numbers Generators
XOF Extended Output Function
XOR Exclusive Or

References
1. Singh, M.; Pati, D. Countermeasures to Replay Attacks: A Review. IETE Tech. Rev. 2020, 3, 599–614. [CrossRef]
2. Conti, M.; Dragoni, N.; Lesyk, V. A Survey of Man In The Middle Attacks. IEEE Commun. Surv. Tutor. 2016, 18, 2027–2051.

[CrossRef]
3. Uma, M.; Padmavathi, G. A Survey on Various Cyber Attacks and Their Classification. Int. J. Netw. Secur. 2013, 15, 390–396.
4. Vanstone, S.; van Oorschot, P. An Introduction to Error Correcting Codes with Applications; Springer International Series in Engineering

and Computer Science Book 71; Springer: Berlin/Heidelberg, Germany, 2013.
5. Korenda, A.; Afghah, F.; Cambou, B. A Secret Key Generation Scheme for Internet of Things using Ternary-States ReRAM-based

PUFs. In Proceedings of the International Wireless Communications and Mobile Computing Conference (IWCMC), Limassol,
Cyprus, 25–29 June 2018.

6. Darbon, j.; Sankur, B.; Maitre, H. Error correcting code performance for watermark protection. In Security and Watermarking of
Multimedia Contents III; SPIE: Bellingham, WA, USA, 2021; Volume 4314. [CrossRef]

7. Gamage, H.; Weerasinghe, H.; Dias, N. A Survey on Blockchain Technology Concepts, Applications, and Issues. SN Comput. Sci.
2020, 1, 114. [CrossRef]

8. Fang, W.; Chen, W.; Zhang, W. Digital signature scheme for information non-repudiation in blockchain: A state of the art review.
J. Wirel. Commun. Netw. 2020, 2020, 56. [CrossRef]

9. Guggenberger, T.; Schlatt, V.; Schmid, J.; Urbach, N. A Structured Overview of Attacks on Blockchain Systems. In Proceedings of
the Twenty-fifth Pacific Asia Conference on Information Systems, Dubai, UAE, 12–14 July 2021.

10. Aggarwal, S.; Kumar, S. Attacks on blockchain. In Advances in Computers; Elsevier: Amsterdam, The Netherlands, 2021;
Volume 121, pp. 399–410. [CrossRef]

11. Tomasin, S.; Zhang, H.; Chorti, A.; Poor, V. Challenge-Response Physical Layer Authentication Over Partially Controllable
Channels. IEEE Commun. Mag. 2022, 60, 138–144. [CrossRef]

12. Smith, J.; Lingham, V.; Driscoll, J.; Fraser, I. Methods and Systems of Providing Verification of Information Using a Centralized or
Distributed Ledger. U.S. Patent 10,558,974 B2, 11 February 2020.

13. Chow, A.; Chan, P.; Haldenby, P.; Lee, J. Document Tracking on a Distributed Ledger. U.S. Patent Application No. 2017/0048216
A1, 16 February 2017.

14. Zang, X.; Liu, C.; Chai, K.; Poslad, S. Challenge-Response Assisted Authorization Scheme for Data Access in Permissioned
Blockchains. Sensors 2020, 20, 4681. [CrossRef]

15. Kaehler, A. Secure Exchange of Cryptographically Signed Records. U.S. Patent 11,044,101 B2, 22 June 2021.
16. Covaci, A.; Madeo, S.; Motylinski, P.; Vincent, S. System and Method for Authenticating Off-Chain Data Based on Proof

Verification. U.S. Patent Application No. 2020/0322132 A1, 8 October 2020.
17. Uhr, J.; Hong, J.; Song, J. Tampering Verification System and Method for Financial Institution Certificates, Based on Blockchain.

U.S. Patent Application No. 2021/0226804 A1, 22 July 2021.
18. Sheng, X.; McGuire, T.; Hromi, J.; Chawla, R. Computationally efficient transfer processing and auditing apparatuses, methods

and systems. U.S. Patent Application No. 2017/0228731 A1, 10 August 2017.

https://doi.org/10.1080/02564602.2019.1684851
https://doi.org/10.1109/COMST.2016.2548426
https://doi.org/10.1117/12.435451
https://doi.org/10.1007/s42979-020-00123-0
https://doi.org/10.1186/s13638-020-01665-w
https://doi.org/10.1016/bs.adcom.2020.08.020
https://doi.org/10.1109/MCOM.001.2200339
https://doi.org/10.3390/s20174681

Axioms 2023, 12, 531 22 of 23

19. Manian, Z.; Krishnan, R.; Sriram, S. Hybrid Blockchain. U.S. Patent Application No. 2017/0243193 A1, 24 August 2017.
20. Watanabe, H.; Akutsu, A.; Miyazaki, Y.; Nakadaira, A.; Fujimura, S. Contract Agreement Method, Agreement Verification Method,

Contract Agreement System, Agreement Verification Device, Contract Agreement Program and Agreement Verification Program.
U.S. Patent Application No. 2018/0205555 A1, 19 July 2018.

21. Harvey, A. Blockchain Enterprise Data Management. U.S. Patent Application No. 2019/0207750 A1, 4 July 2019.
22. Afghah, F.; Cambou, B. Authentication Based on a Challenge and a Response, a PUF and Machine Learning. U.S. Patent 10,469,273,

5 November 2019.
23. Cambou, B.; Gowanlock, M.; Heynssens, J.; Jain, S.; Philabaum, C.; Booher, D.; Burke, I.; Garrard, J.; Telesca, D.; Njilla, L. Securing

Additive Manufacturing with Blockchains and Distributed PUFs. Cryptography 2020, 4, 17. [CrossRef]
24. Cambou, B. Secure Digital Signatures Using PUF Devices with Reduced Error Rates. U.S. Patent 11,271,759, 9 March 2022.
25. Cambou, B.; Telesca, D.; Jacinto, H. PUF-protected methods to generate session keys. In Advances in Information and Communication,

Proceedings of the 2022 Future of Information and Communication Conference (FICC), Volume 2; Springer: Berlin/Heidelberg, Germany, 2022.
26. Cambou, B.; Jain, S. Key Recovery for Content Protection Using Ternary PUFs Designed with Pre-Formed ReRAM. Appl. Sci.

2022, 12, 1785. [CrossRef]
27. Haasnoot, E. Presentation attack detection and biometric recognition in a challenge-response formalism Erwin. EURASIP J. Inf.

Secur. 2022, 2022, 5. [CrossRef]
28. Mohamed, M.; Shrestha, P.; Saxena, N. Challenge-response behavioral mobile authentication: A comparative study of graphical

patterns and cognitive games. In Proceedings of the ACSAC’19: 2019 Annual Computer Security Applications Conference, San
Juan, Puerto Rico, 9–13 December 2019.

29. Blom, R. Challenge-Response User Authentication. U.S. Patent 7,194,765 B2, 20 March 2007.
30. Song, J.; Noh, S.; Choi, J.; Yoon, H. A practical challenge-response authentication mechanism for a Programmable Logic Controller

control system with one-time password in nuclear power plants. Nucl. Eng. Technol. 2019, 51, 1791–1798. [CrossRef]
31. Rhee, K.; Kwak, J.; Kim, S.; Won, D. Challenge-Response Based RFID Authentication Protocol for Distributed Database En-

vironment. In Security in Pervasive Computing; Hutter, D., Ullmann, M., Eds.; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2005; Volume 3450, pp. 70–84.

32. NIST. Status Report on the Third Round of Post Quantum Cryptography Standardization Process. 2022. Available online:
https://doi.org/10.6028/NIST.IR.8413 (accessed on 29 September 2022).

33. Bos, J.; Ducas, L.; Kiltz, E.; Lepoint, T.; Lyubashevsky, V.; Schanck, J.M.; Schwabe, P.; Seiler, G.; Stehle, D. CRYSTALS-Kyber: A
CCA-secure module-lattice-based KEM. In Proceedings of the 2018 IEEE European Symposium on Security and Privacy (EuroS P),
London, UK, 24–26 April 2018; pp. 353–367. [CrossRef]

34. Avanzi, R.; Bos, J.; Ducas, L.; Kiltz, E.; Lepoint, T.; Lyubashevsky, V.; Schanck, J.; Schwabe, P.; Seiler, G.; Stehle, D. CRYSTALS-
KYBER Algorithm Specifications and Supporting Documentation, 3rd Round Submission to the NIST’s Post-Quantum Cryptog-
raphy Standardization Process. 2020. Available online: https://csrc.nist.gov/projects/post-quantumcryptography/round-3-
submissions (accessed on 29 September 2022).

35. Ducas, L.; Kiltz, E.; Lepoint, T.; Lyubashevsky, V.; Schwabe, P.; Seiler, G.; Stehle, D. CRYSTALS-Dilithium: A lattice-based digital
signature scheme. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018, 2018, 238–268. [CrossRef]

36. Bai, S.; Ducas, L.; Kiltz, E.; Lepoint, T.; Lyubashevsky, V.; Schwabe, P.; Seiler, G.; Stehle, D. CRYSTALS-Dilithium: Algorithm
Specifications and Supporting Documentation, Submission to NIST’s PQC Standardization Process. Available online: https:
//github.com/pq-crystals/dilithium/tree/round3 (accessed on 8 February 2021).

37. Bernstein, D.; Brumley, B.; Chen, M.; Chuengsatiansup, C.; Lange, T.; Marotzke, A.; Peng, B.; Tuveri, N.; van Vredendaal, C.; Yang,
B. NTRU Prime: Round 3, Submission to the NIST’s Post-Quantum Cryptography Standardization Process. 2020. Available
online: https://ntruprime.cr.yp.to/nist/ntruprime-20201007.pdf (accessed on 24 May 2023).

38. Chen, C.; Hoffstein, J.; Whyte, W.; Zhang, Z. NIST PQ Submission: NTRU Encrypt a Lattice Based Encryption Algorithm, Submission
to the NIST’s Post-Quantum Cryptography Standardization Process; National Institute of Standards and Technology: Gaithersburg,
MD, USA, 2017.

39. Hoffstein, J.; Pipher, J.; Silverman, J. NTRU: A ring-based public key cryptosystem. In Algorithmic Number Theory; Buhler, J.P., Ed.;
Springer: Berlin/Heidelberg, Germany, 1998; pp. 267–288.

40. Faugere, J.; Gauthier-Umana, V.; Otmani, A.; Perret, L.; Tillich, J. A distinguisher for high rate McEliece cryptosystems. In
Proceedings of the IEEE Information Theory Workshop, Paraty, Brazil, 16–20 October 2011; pp. 282–286. [CrossRef]

41. Bernstein, D.; Hulsing, A.; Kolbl, S.; Niederhagen, R.; Rijneveld, J.; Schwabe, P. The SPHINCS+ signature framework. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, CCS’19, New York, NY, USA,
11–15 November 2019; pp. 2129–2146. [CrossRef]

42. Prest, T.; Fouque, J.; Hoffstein, J.; Kirchner, P.; Lyubashevsky, V.; Pornin, T.; Ricosset, T.; Seiler, G.; Whyte, W.; Zhang, Z. Falcon:
Fast-Fourier Lattice-based Compact Signatures over NTRU; Round 3, NIST PQC Standardization Process. 2020. Available online:
https://www.di.ens.fr/~prest/Publications/falcon.pdf (accessed on 29 September 2022).

43. Bertoni, G.; Daemen, J.; Peeters, M.; van Assche, G. The Keccak SHA-3 Submission. Submission to the NIST SHA-3 Competition
(Round 3). 2011. Available online: http://keccak.noekeon.org/Keccak-submission-3.pdf (accessed on 14 January 2011).

44. National Institute of Standards and Technology. Secure Hash Standard (SHS); NIST Federal Information Processing Standards
Publication 180–4; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2015. [CrossRef]

https://doi.org/10.3390/cryptography4020017
https://doi.org/10.3390/app12041785
https://doi.org/10.1186/s13635-022-00131-y
https://doi.org/10.1016/j.net.2019.05.012
https://doi.org/10.6028/NIST.IR.8413
https://doi.org/10.1109/EuroSP.2018.00032
https://csrc.nist.gov/projects/post-quantumcryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantumcryptography/round-3-submissions
https://doi.org/10.46586/tches.v2018.i1.238-268
https://github.com/pq-crystals/dilithium/tree/round3
https://github.com/pq-crystals/dilithium/tree/round3
https://ntruprime.cr.yp.to/nist/ntruprime-20201007.pdf
https://doi.org/10.1109/ITW.2011.6089437
https://doi.org/10.1145/3319535.3363229
https://www.di.ens.fr/~prest/Publications/falcon.pdf
http://keccak.noekeon.org/Keccak-submission-3.pdf
https://doi.org/10.6028/NIST.FIPS.180-4

Axioms 2023, 12, 531 23 of 23

45. National Institute of Standards and Technology. SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions; NIST
Federal Information Processing Standards Publication 202; National Institute of Standards and Technology: Gaithersburg, MD,
USA, 2015. [CrossRef]

46. Rahardja, U.; Kosasi, S.; Harahap, E.; Aini, Q. Authenticity of a Diploma Using the Blockchain Approach. Int. J. Adv. Trends
Comput. Sci. Eng. 2020, 9, 250–256.

47. Qazi, M.; Kulkarni, D.; Nagori, M. Proof of Authenticity-Based Electronic Medical Records Storage on Blockchain. In Smart Trends
in Computing and Communications; Springer: Berlin/Heidelberg, Germany, 2019; pp. 297–306.

48. Bell, M.; Green, A.; Sheridan, J.; Collomosse, J.; Cooper, D.; Bui, T.; Thereaux, O.; Higgins, J. Underscoring archival authenticity
with blockchain technology. Insights 2019, 32, 21. [CrossRef]

49. Shetty, S.; Red, V.; Kamhoua, C.; Kwiat, K.; Njilla, L. Data provenance assurance in the cloud using blockchain. In Disruptive
Technologies in Sensors and Sensor Systems; SPIE: Bellingham, WA, USA, 2017; Volume 10206, p. 102060I. [CrossRef]

50. Feng, T.; Bhowmik, D. The multimedia blockchain: A distributed and tamper-proof media transaction framework. In Proceedings
of the 22nd International Conference on Digital Signal Processing (DSP), London, UK, 23–25 August 2017.

51. Pappalardo, G.; Di Matteo, T.; Caldarelli, G. Blockchain inefficiency in the Bitcoin peers network. EPJ Data Sci. 2018, 7, 30.
[CrossRef]

52. Uddin, M.; Stranieri, A.; Gondal, I.; Balasubramanian, V. A Decentralized Patient Agent Controlled Blockchain for Remote
Patient Monitoring. In Proceedings of the 2019 International Conference on Wireless and Mobile Computing, Networking and
Communications (WiMob), Barcelona, Spain, 21–23 October 2019; pp. 1–8. [CrossRef]

53. Liang, W.; Fan, Y.; Li, K.; Zhang, D.; Gaudiot, J. Secure Data Storage and Recovery in Industrial Blockchain Network Environments.
IEEE Trans. Ind. Inform. 2020, 16, 6543–6552. [CrossRef]

54. Mohanta, L.; Panda, S.; Jena, D. An Overview of Smart Contract and Use Cases in Blockchain Technology. In Proceedings of the
9th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Bengaluru, India, 10–12
July 2018; pp. 1–4. [CrossRef]

55. Bedi, P.; Gole, P.; Dhiman, S.; Gupta, N. Smart Contract based Central Sector Scheme of Scholarship for College and University
Students. Procedia Comput. Sci. 2020, 171, 790–799. [CrossRef]

56. Kukkala, V.; Thiruloga, S.; Pasricha, S. Roadmap for Cybersecurity in Autonomous Vehicles. IEEE Consum. Electron. Mag. 2022,
11, 13–23. [CrossRef]

57. Li, S.; Iqbal, M.; Saxena, N. Future Industry Internet of Things with Zero-trust Security. Inf. Syst. Front. 2022. [CrossRef]
58. Yang, D.; Zhao, Y.; Wu, K.; Guo, X.; Peng, H. An efficient authentication scheme based on Zero Trust for UAV swarm. In

Proceedings of the 2021 International Conference on Networking and Network Applications (NaNA), Lijiang City, China, 29
October–1 November 2021; pp. 356–360. [CrossRef]

59. Blåberg, J. Zero Trust in Autonomous Vehicle Networks Utilizing Automotive Ethernet. Master’s Thesis, Chalmers University of
Technology/Department of Computer Science and Engineering, Gothenburg, Sweden, 2022.

60. Hurley, J. Zero-trust is not enough: Mitigating data repository breaches. In Proceedings of the ICCWS 2023 18th International
Conference on Cyber Warfare and Security, Towson, MD, USA, 9–10 March 2023.

61. Bustio-Martínez, L.; Letras-Luna, M.; Cumplido, R.; Hernández-León, R.; Feregrino-Uribe, C.; Bande-Serrano, J. Using hashing
and lexicographic order for Frequent Item-sets Mining on data streams. J. Parallel Distrib. Comput. 2019, 125, 58–71. [CrossRef]

62. Pupunwiwat, P.; Stantic, B. Minimizing collisions in RFID data streams using probabilistic Cluster-Based Technique. Wirel. Netw.
2013, 19, 689–703. [CrossRef]

63. Cambou, B. Unequally powered Cryptography with PUFs for networks of IoTs. In Proceedings of the IEEE Spring Simulation
Conference, Tucson, AZ, USA, 29 April–2 May 2019.

64. Cambou, B.; Philabaum, C.; Booher, D.; Telesca, D. Response-Based Cryptographic Methods with Ternary Physical Unclonable
Functions. In Advances in Information and Communication, Proceedings of the 2019 Future of Information and Communication Conference
(FICC), Volume 2; Springer: Berlin/Heidelberg, Germany, 2019.

65. Mohd, B.; Hayajneh, T.; Vasilakos, A. A survey on lightweight block ciphers for low-resource devices: Comparative study and
open issues. J. Netw. Comput. Appl. 2015, 58, 73–93. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.1629/uksg.470
https://doi.org/10.1117/12.2266994
https://doi.org/10.1140/epjds/s13688-018-0159-3
https://doi.org/10.1109/WiMOB.2019.8923209
https://doi.org/10.1109/TII.2020.2966069
https://doi.org/10.1109/ICCCNT.2018.8494045
https://doi.org/10.1016/j.procs.2020.04.086
https://doi.org/10.1109/MCE.2022.3154346
https://doi.org/10.1007/s10796-021-10199-5
https://doi.org/10.1109/NaNA53684.2021.00068
https://doi.org/10.1016/j.jpdc.2018.11.002
https://doi.org/10.1007/s11276-012-0495-3
https://doi.org/10.1016/j.jnca.2015.09.001

	Introduction and Background Information
	CRP Mechanism Based on Digital Files
	Response Generation with File-Based CRP Mechanism
	Generation of an Orderly Subset of Responses

	Protocols Verifying the Authenticity of Digital Files in Distributed Networks
	Description of the Protocols with CRP Mechanisms
	Enrollment Cycle
	Verification Cycle

	Example of Use Case in Distributed Networks
	Initial Enrollment and Distribution of the Files
	Verification in Distributed Networks

	Security Analysis in Distributed Networks

	Protocols Protecting Terminal Devices in Zero-Trust Networks
	Description of the Protocols with CRP Mechanisms
	Enrollment Cycle
	Verification Cycle

	Example of Use Case in Zero-Trust Networks
	Initial Set Up—Enrollment
	Verification of Authenticity—Deciphering the Files

	Security Analysis in Zero-Trust Networks
	Loss of Both Kr and the Information Stored in the Terminal Device
	Verifying the Index of the Confidential File
	Replays, Man-in-the-Middle, and Side Channel Analysis

	Statistical Analysis of the Protocols Based on Subsets of Responses and ECC
	Statistical Predictive Model for Collisions
	Model for Heavy Noise Injections
	Error Management in the Cryptographic Keys
	Error Management with Response-Based Cryptography
	Error Management of Collisions
	Failure to Detect Matching Responses

	Conclusions and Future Work
	References

