
QB\133502.00130\66678112.1

ATTORNEY DOCKET NO. 2019-026 (133502.00130)

1

PHYSICAL UNCLONABLE FUNCTION-BASED ENCRYPTION SCHEMES WITH

COMBINATION OF HASHING METHODS

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] The present application claims priority to U.S. Provisional Application 62/966,930 entitled

“Physical Unclonable Function-Based Encryption Schemes with Combination of Hashing

Methods” and filed on January 28, 2020, the disclosure of which is incorporated herein by

reference.

[0002] The present application claims priority to and is a continuation in part of U.S. Patent

Application No. 16/818,807 entitled “PUF-Based Key Generation for Cryptographic Schemes,”

filed on March 13 2020 and published on September 17, 2020 as U.S. Pre-Grant Publication No.

2020/0295954A1, which in turn claims priority to U.S. Provisional Application 62/817,966

entitled “PUF-Based Key Generation for Cryptographic Schemes with Multiple Hashing of Private

Keys” and filed on March 13, 2019, the disclosure of which is incorporated herein by reference.

BACKGROUND OF THE INVENTION

[0003] Information is frequently encrypted to protect against eavesdropping and unauthorized

access using encryption schemes based on the use of one or more encryption keys and other keyless

encryption schemes. Encryption schemes are frequently used in conjunction with authentication

schemes to improve the security of electronic systems. PUF-based security systems use a PUF

device as an “electronic fingerprint” unique to a user or device in possession or control of the PUF

device, allowing an authentication system to challenge a client seeking authentication, receive a

response generated by the client using a PUF device, and then compare the received with a stored

response previously received from the client or derived from characteristics of the PUF device and

verifying that the two responses match.

BRIEF SUMMARY

[0004] In an example embodiment, a system comprises a processor and memory coupled to the

processor. The memory stores device data and executable instructions. The device data represent

measured device characteristics of physical-unclonable-function (“PUF”) arrays having pluralities

QB\133502.00130\66678112.1

ATTORNEY DOCKET NO. 2019-026 (133502.00130)

2

of PUF devices, each PUF array belonging to one of a plurality of computing devices. Each

computing device of the plurality of computing devices is part of a network of computing devices.

When executed by the processor, the executable instructions cause the processor to transmit a

processing instruction to a remote device; determine expected measurement values of

characteristics of the set of PUF devices measured by the remote device by using the processing

instruction to determine and retrieve a subset of the device data stored in the memory and

associated with the set of PUF devices measured by the remote device; and derive a set of

encryption keys from the expected measurement values; and communicate with the remote device

by performing a cryptographic operation secured by the set of encryption keys. Performing the

cryptographic operation includes segmenting a datastream into datastream fragments; associating

each datastream fragment with a corresponding encryption key belonging to the set of encryption

keys; and applying a one-way cryptographic function to the corresponding encryption key for each

datastream fragment to generate a transformed fragment having a value that depends on both a

value of that datastream fragment and the a value of the corresponding encryption key. The remote

device is configured to use the processing instruction to determine a set of PUF devices belonging

to the PUF array of the remote device and measure characteristics of those PUF devices.

[0005] In another example embodiment, a system comprises a processor, a physical-unclonable-

function ("PUF") array of PUF devices, and memory coupled to the processor. The memory stores

instructions that, upon execution by the processor, cause the processor to receive a processing

instruction; determine a set of PUF devices belonging to the PUF array using the processing

instruction and measure characteristics of the set of PUF devices processing instruction derive a

set of encryption keys from the measured characteristics of the PUF devices determined using the

processing instruction; and communicate with a remote device by performing a cryptographic

operation secured by the set of encryption keys. Performing the cryptographic operation includes

segmenting a datastream into datastream fragments; associating each datastream fragment with a

corresponding encryption key; and applying a one-way cryptographic function to the

corresponding encryption key for each datastream fragment to generate a transformed fragment

having a value that depends on both a value of that datastream fragment and the a value of the

corresponding encryption key.

[0006] In another example embodiment, a method of secure communication between a first

computing device having a physical unclonable function (“PUF”) array of PUF devices and a

QB\133502.00130\66678112.1

ATTORNEY DOCKET NO. 2019-026 (133502.00130)

3

second computing device storing device data representing characteristics of the PUF array of the

first computing device comprises receiving a processing instruction and determining a set of PUF

devices belonging to a PUF array using the processing instruction; obtaining characteristics of a

set PUF devices determined using the processing instruction and belonging to the PUF array;

deriving a set of encryption keys from the characteristics of the set of PUF devices determined

using the processing instruction; and performing a cryptographic operation secured by the set of

encryption keys. Performing the cryptographic operation includes segmenting a datastream into

datastream fragments; associating each datastream fragment with a corresponding encryption key

belonging to the set of encryption keys; and applying a one-way cryptographic function to the

corresponding encryption key for each datastream fragment to generate a transformed fragment

having a value that depends on both a value of that datastream fragment and the a value of the

corresponding encryption key.

[0007] In another embodiment a system includes a processor, and memory coupled to the

processor. The memory stores device data representing measured device characteristics of

physical-unclonable-function (“PUF”) arrays having pluralities of PUF devices. Each PUF array

belongs to one of a plurality of computing devices. Each computing device of the plurality of

computing device is part of a network of computing devices. The memory includes executable

instructions that, when executed by the processor, cause the processor to transmit a processing

instruction to a remote device, wherein the remote device is configured to use the processing

instruction to determine a set of PUF devices belonging to the PUF array of the remote device and

measure characteristics of those PUF devices, determine expected measurement values of

characteristics of the set of PUF devices measured by the remote device by using the processing

instruction to identify and retrieve a subset of the device data stored in the memory and associated

with the set of PUF devices measured by the remote device, derive a set of encryption keys from

the expected measurement values, and communicate with the remote device by performing a

cryptographic operation secured by the set of encryption keys. The cryptographic operation

includes segmenting a first data stream into a first plurality of data stream fragments, segmenting

a first data stream fragment of the first plurality of data stream fragments into a first numeric value

and a second numeric value, identifying, using the first numeric value, a first encryption key of

the set of encryption keys, and applying a one-way cryptographic function to the first encryption

key a first number of times determined by the second numeric value to generate a transformed

QB\133502.00130\66678112.1

ATTORNEY DOCKET NO. 2019-026 (133502.00130)

4

fragment having a value that depends on the values of the first numeric value and the second

numeric value from the first data stream fragment and a value of the first encryption key.

[0008] In another embodiment, a system includes a processor, and memory coupled to the

processor. The memory stores device data representing measured device characteristics of at least

one physical-unclonable-function (“PUF”) device and executable instructions that, when executed

by the processor, cause the processor to derive a set of encryption keys from the measured device

characteristics of the at least one PUF device and communicate with a remote device by performing

a cryptographic operation secured by the set of encryption keys. The cryptographic operation

includes segmenting a first data stream into a first plurality of data stream fragments, segmenting

a first data stream fragment of the first plurality of data stream fragments into a first numeric value

and a second numeric value, identifying, using the first numeric value, a first encryption key of

the set of encryption keys, and applying a one-way cryptographic function to the first encryption

key a first number of times determined by the second numeric value to generate a transformed

fragment having a value that depends on the values of the first numeric value and the second

numeric value from the first data stream fragment and a value of the first encryption key.

[0009] In another embodiment, a method includes deriving a set of encryption keys from measured

device characteristics of at least one PUF device and communicating with a remote device by

performing a cryptographic operation secured by the set of encryption keys. The cryptographic

function includes segmenting a first data stream into a first plurality of data stream fragments,

segmenting a first data stream fragment of the first plurality of data stream fragments into a first

numeric value and a second numeric value, identifying, using the first numeric value, a first

encryption key of the set of encryption keys, and applying a one-way cryptographic function to

the first encryption key a first number of times determined by the second numeric value to generate

a transformed fragment having a value that depends on the values of the first numeric value and

the second numeric value from the first data stream fragment and a value of the first encryption

key.

[0010] The above features and advantages of the present invention will be better understood from

the following detailed description taken in conjunction with the accompanying drawings.

QB\133502.00130\66678112.1

ATTORNEY DOCKET NO. 2019-026 (133502.00130)

5

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The drawings described herein constitute part of this specification and includes example

embodiments of the present invention which may be embodied in various forms. It is to be

understood that in some instances, various aspects of the invention may be shown exaggerated or

enlarged to facilitate an understanding of the invention. Therefore, drawings may not be to scale.

[0012] FIG. 1 depicts an enrollment procedure wherein a server issues processing instruction to

clients having PUF arrays and stores measurements of PUF devices determined using those

instructions for use in subsequent authentication of the clients, according to one embodiment.

[0013] FIG. 2 is a block diagram of a client device with an addressable PUF generator (APG),

interacting with a server to independently generate shared encryption keys.

[0014] FIG. 3 is a schematic illustration of the use of a 512-bit message digest to produce multiple

256-bit keys using an APG.

[0015] FIG. 4 is a flow diagram illustrating encryption and decryption processes in a hash-based

cryptography scheme according to certain embodiments.

[0016] FIG. 5 is a flow diagram illustrating cryptographic signing and signature verification

processes in a hash-based cryptography scheme according to certain embodiments.

[0017] FIG. 6 is a flow diagram depicting an encryption procedure that may be practiced using the

embodiment of FIG. 4.

[0018] FIG. 7 is a flow diagram depicting a decryption procedure that may be practiced using the

embodiment of FIG. 4.

[0019] FIG. 8 is a flow diagram depicting an error-correction mechanism suitable for use with

embodiments disclosed herein.

[0020] FIGS. 9A-B are tables illustrating performance characteristics of various hash-bashed

cryptography schemes according to embodiments disclosed herein.

[0021] FIG. 10 is a flow diagram illustrating encryption and decryption processes in a hash-based

cryptography scheme according to certain embodiments.

QB\133502.00130\66678112.1

ATTORNEY DOCKET NO. 2019-026 (133502.00130)

6

DETAILED DESCRIPTION

[0022] The described features, advantages, and characteristics may be combined in any suitable

manner in one or more embodiments. One skilled in the relevant art will recognize that the

invention may be practiced without one or more of the specific features or advantages of a

particular embodiment. In other instances, additional features and advantages may be recognized

in certain embodiments that may not be present in all embodiments.

[0023] Reference throughout this specification to “one embodiment,” “an embodiment,” or similar

language means that a particular feature, structure, or characteristic described in connection with

the embodiment is included in at least one embodiment. Thus appearances of the phrase “in one

embodiment,” “in an embodiment,” and similar language throughout this specification may, but

do not necessarily, all refer to the same embodiment. References to “users” refer generally to

individuals accessing a particular computing device or resource, to an external computing device

accessing a particular computing device or resource, or to various processes executing in any

combination of hardware, software, or firmware that access a particular computing device or

resource. Similarly, references to a “server” refer generally to a computing device acting as a

server, or processes executing in any combination of hardware, software, or firmware that access

control access to a particular computing device or resource. References to “one-way functions”

refer mathematical operations which are easy or practical to compute but whose inputs are difficult

or impractical to recover using a known output of the function given the computational resources

available. References to “approximately” or “effectively” one-way functions refer to functions

that may be easily inverted if additional “secret” information is known but which are one-way to

a party that does not have access any such secret information.

[0024] Conventional systems and methods for secure communication frequently rely upon

encryption of messages using encryption keys which may be symmetrical or asymmetrical (e.g.,

in public key encryption schemes). Such key-based encryption schemes have disadvantages. First

keys must be generated and stored by various parties, introducing the possibility that the keys may

be compromised by a malicious party. Additionally, key-based encryption schemes may be

vulnerable to brute force attacks wherein a malicious party may discover the key given access to

a message encrypted with that key.

QB\133502.00130\66678112.1

ATTORNEY DOCKET NO. 2019-026 (133502.00130)

7

[0025] Hash-based computing methods for cryptographic schemes, also referred to as hash-based

cryptography (HBC), was an active field of research in the 1980’s, but lost its momentum due to

the complexity of the public-private key exchange. More recently, interest in HBC has increased,

because this is one possible path to design quantum computing-resistant cryptographic schemes.

However, the field of use of existing HBC schemes is mainly restricted to digital signature

algorithms (DSA). Non-limiting examples of HBC with multiple hashing of private keys are the

Winternitz one-time signature (W-OTS), W-OTS+, Merkle signature scheme (MSS), and extended

MSS (XMSS).

[0026] A hash function H is a one-way cryptographic function transforming a plain text X of any

size, into a message digest Y having a fixed length regarding of the size of X according to Equation

1:

𝑋 → 𝑌 𝐻 𝑋 .

[0027] Hash functions used in cryptography (and other suitable one-way cryptographic functions)

are pre-image resistant; it is statistically unlikely to find a second plain text X’ different than X

with the same message digest Y, and to find a second message digest Y’ different than Y, hashed

from the same plain text X. The hash functions used in HBC are also collision resistant: it is

statistically unlikely that two plain texts X, and X’ have the same message digest Y.

[0028] Multiple hashing is used in digital signature schemes, such as the Winternitz One-Time-

Signature (W-OTS), which relies on a public-private key pair exchange. To sign 256-bit long

message digests, the private keys are a set of 32 256-bit long streams of random numbers: Xi with

i ϵ {0, 31}. The public keys are the set of 32 256-bit long streams Yi that are hashed 256 times

according to Equation 2:

𝑋 → 𝑌 𝐻 𝑋 with 𝐢 ϵ 0, 255 .

[0029] A plaintext P to be signed is hashed to generate a 256-bit long message digest M which is

segmented into 32 8-bit long blocks according to Equation 3:

𝑴 𝑚 , …𝑚 , …𝑚 , … , 𝑚 , …𝑚 , …𝑚 , … , 𝑚 , …𝑚 , …𝑚 ,

where i ϵ {0, 31} and k ϵ {0, 7}.

QB\133502.00130\66678112.1

ATTORNEY DOCKET NO. 2019-026 (133502.00130)

8

[0030] Each block 𝑚 , …𝑚 , …𝑚 , is represented by an integer Ki smaller than 256. The

signature of the plain text is the set of 32 256-bit long streams according to Equation 4:

𝑺 𝐻 𝑋 , … ,𝐻 𝑋 , … ,𝐻 𝑋

where i ϵ {0, 31} and 𝑋 → 𝑠 𝐻 𝑋 . The signature is valid when all 32 𝑣 verify such

that 𝑣 𝑌 (Equation 5).

[0031] This signature is strong, and quantum computing resistant, the public-private key pair

exchange, however the size of the private-public key pairs are long: 256 x 32 = 8,192 bits are

needed to sign a 256-bit long message digest. The latency could be long because of the need to

perform 256x32 hashing cycles for each signature. Accordingly, the improvement of the

efficiency of HBC has been a topic of recent interest. The vast majority of existing methods aim

to enhance digital signature schemes (DSA) and do not suggest generic encryption methods. It

has been suggested that tokens, physical unclonable functions, and other hardware-based solutions

can generate cryptographic keys; however, the applicability to HBC is not clear.

[0032] Accordingly, embodiments disclosed herein address these and other shortcomings by using

physical unclonable function (“PUF”) generators in combination with HBC and/or other

encryption schemes to eliminate the need to exchange long public keys, thereby improving security

and making the encryption of long messages practical. PUF generators can be thought of as

“wallets” of keys that are addressable though a handshake with a server. Rather than exchanging

keys through insecure communication channels, both parties exchange (or independently access)

random numbers and instructions and generate the keys directly from their “wallets.” Thus, large

numbers of keys can be made available for use with hash-based cryptography, without requiring

large exchanges of information over communication channels which may weaken security and/or

impose performance penalties.

[0033] In the context of this disclosure, a processing instruction is any information used to cause

an APG to produce an expected response (sometimes referred to as a “challenge response” in the

context of authentication systems) corresponding to that information by measuring one or more

PUF devices. Processing instructions may be used to cause an APG to access devices (or ranges

of devices) in an array of PUF devices belonging to the APG. Along these lines, a processing

instruction may be input supplied to an APG which is used to produce a response having one or

more expected values which depend upon characteristics' of the PUF array belonging to the APG

QB\133502.00130\66678112.1

ATTORNEY DOCKET NO. 2019-026 (133502.00130)

9

to which the processing instruction is issued. The appropriate may be derived from those

characteristics using instructions stored by the APG or other processing circuitry, received by the

APG or other processing circuitry and/or additional information supplied to the APG or other

processing circuitry (such as a password of a user). In one simple non-limiting example, a

processing instruction processing instruction might simply cause an APG to return the values

stored by devices of a PUF array at a specified address or range of addresses. In other non-limiting

examples, a processing instruction processing instruction might include instructions to perform a

mathematical, logical, or other operation(s) on those values.

[0034] An array of addressable PUFs can be used as an addressable wallet of cryptographic keys.

The PUFs are the “fingerprints” of microelectronic components such as memory devices. During

enrollment, the fingerprint of the PUF of the client device is memorized by the server in the form

of a lock up table, or cryptographic table. Assuming that the PUF is reliable, the same reading can

be extracted on demand. Error matching and correcting methods can take care of the potential

mismatches when the PUF is subject to aging, temperature changes, or environmental variations.

A processing instruction generated by the server side may become a “public key” that is openly

shared between communicating parties. The processing instruction may be hashed with an

additional password, PIN code, and/or biometric data (e.g., fingerprint, vein pattern, or retinal

data). In some embodiments, both a server and a client device (or other such devices) that share

access to data representing characteristics of a PUF itself can independently generated encryption

key pairs according to any suitable asymmetric encryption scheme. While such asymmetric key

pairs frequently referred to as “public” and “private” keys, it should be noted that the embodiments

herein enable the use of such key pairs without the need for a so-called “public” key to be published

or made publicly available in any way, while still realizing the other known benefits of

public/private key encryption.

[0035] Non-limiting examples of measurable physical characteristics of devices used in PUF

arrays are time delays of transistor-based ring oscillators and transistor threshold voltages.

Additional examples include data stored in SRAM or information derived from such data. For

instance, in a PUF array based on SRAM cells, an example of such physical characteristics may

be the effective stored data values of individual SRAM devices (i.e., ‘0’ or ‘1’) after being

subjected to a power-off/power-on cycle. Because the initial state (or other characteristics) of an

individual PUF device may not be perfectly deterministic, statistics produced by repeated

QB\133502.00130\66678112.1

ATTORNEY DOCKET NO. 2019-026 (133502.00130)

10

measurements of a device may be used instead of single measurements. In the example of an

SRAM-based PUF device, the device could be power-cycled 100 times and the frequency of the

‘0’ or ‘1’ state could be used as a characteristic of that device. Other non-limiting examples of

suitable characteristics include optical measurements. For instance, a PUF device may be an

optical PUF device which, when illuminated by a light source such as a laser, produces a unique

image. This image may be digitized and the pixels may be used as an addressable PUF array. A

good PUF should be predictable, and subsequent responses to the same processing instruction

should be similar to each other (and preferably identical).

[0036] Additional non-limiting examples of measurable physical characteristics of devices used

in PUF arrays are currents induced by an applied input voltage or current, voltages of various

circuit elements during operation of a PUF device in response to an input or other stimulus. Further

non-limiting examples may include derived quantities such as resistance, conductance,

capacitance, inductance, and so on. In certain embodiments, such characteristics of a device may

be functions of an input or stimulus level of the device. For example, a current-voltage

characteristics of memristors and other devices may be non-linear. Thus, the measured resistance

of a memristor will depend on a current or voltage level applied during the measurement process.

If a memristor or device with similar characteristics is operated within a non-hysteretic regime, the

measured resistance may be a predictable function of the input stimulus (e.g., an input current

supplied by a current source). Thus the relationship between applied current and voltage measured

across a memristor (or between applied voltage and current measured through the memristor) is

one example of a non-linear transfer function which can be exploited to produce multiple discrete

or continuous characteristic values using a single PUF device.

[0037] According to various embodiments, an encryption protocol enabled by PUFs includes the

following stages: (1) Enrollment, (2) Handshaking, (3) Ciphertext Generation, and (4) Ciphertext

Decryption. These stages are described below, beginning with reference to FIG. 1 illustrating an

example environment 100 in which embodiments disclosed herein may be practiced. The

environment 100 includes a server 102 and client devices, hereinafter clients 105 (represented by

clients 105a, 105j, and 105n). The server 102 manages a database 104 which may be stored in

memory of the server 102. The database 104 stores characteristics of the PUF arrays 160 of each

client (i.e., “images” of each PUF array 160), which may be generated in response to processing

instructions issued by the server 102 to the clients 105, each of which may respond to the

QB\133502.00130\66678112.1

ATTORNEY DOCKET NO. 2019-026 (133502.00130)

11

processing instructions by accessing a respective PUF array 160 represented by the PUF arrays

160a, 160j, and 160n belonging to clients 105a, 105j, and 105n. Alternatively, the server 102

may be otherwise provided with information suitable to generate the initial responses 130.

[0038] A PUF array 160 may form parts of an addressable PUF generator (APG), described further

below, which may contain additional processing circuitry and execute instructions for generating

processing instruction s. Enrollment is performed for each client 105 in a secure environment.

After enrollment, the constellation of clients 105 may operate in an insecure environment and

communicate with each other over public networks. Secure information needs to be encrypted.

[0039] FIG. 2 illustrates a simplified example embodiment 200 of where a client 205 (i.e., having

an APG communicates with a server 202 according to an encryption scheme in which the server

202 and client 205 communicate securely be encrypting communications between them with an

encryption key 240 that is independently generated by the client 205 and the server 202 using a

processing instruction 222 issued by the server 202 to the client. The APG 210 includes a PUF

array 260 which may be accessed by a microcontroller of the APG 210 or other processing circuitry

of the client 205. The PUF array 260 of a client 205 is an array of electronic or other devices with

measurable physical characteristics, configured in an addressable array similar to an addressable

memory device such as RAM or ROM chip. Due to small variations which occur during

semiconductor manufacturing or other manufacturing processes, each PUF device (and hence each

PUF array 260) may be unique, even if the PUF arrays are mass-produced by a process designed

to produce nominally identical devices. The PUF array 210 (shown as a 2D-array of cells) of a

client 205 may be accessed by the client 205 which receives processing instructions 222

(originating in this example from the server 202). The APG 210 responds by to processing

instructions 222 by generating responses 230 using measured characteristics of one or more PUF

devices within the PUF array 260 identified by the processing instruction 222 or derived from it

using instructions stored by the APG 210. As shown, the processing instruction 222 (which may

be a random number, seed value, or any other suitable string, bitstream or other information) may

be used to generate a digest 225 using a hash function 221. The digest 225 may be used to specify

an address or range of addresses in the PUF array 260 (or the image 261 of the PUF array 260)

Additional security may be provided by combining the processing instruction 222 with an optional

password such as the password 223a for the client 202 and the password 223b for the client 205.

The passwords 223a, b may be the same or different.

QB\133502.00130\66678112.1

ATTORNEY DOCKET NO. 2019-026 (133502.00130)

12

[0040] The APG 210 contains a PUF array 260 that is unique to the client 205. The APG 210 of

the client 205 may be used to generate numerous responses 230 unique to that client 205. These

responses 230 cannot be replicated by an attacker without physical access to the PUF array 260.

The responses 230 may be used as the encryption key 240 or may be otherwise used to derive the

encryption key 240. The server 202 may similarly use the image 261 of the PUF array 260 and

the processing instruction to independently generate the key 240 or derive it.

[0041] After clients 205 are enrolled with the server 202, embodiments disclosed herein may be

utilized to authenticate the client 205 and produce the encryption key 240 which the server 202

and client 205 may use to communicate securely. First, the server 202 and the client 205 enter the

Handshaking stage. In the Handshaking stage an objective is for the server 202 to transmit the

information needed to identify a particular portion of the PUF array 260 of the client 205. Both

the server 202 and the client 205 can independently produce a response to the processing

instruction 222: the server can lookup information about the PUF array 260 obtained during

enrollment (or otherwise supplied to the server 202) and the client 205 can retrieve the same

information by using the APG 210 to access the PUF array 260.

[0042] During Handshaking, the server 202 issues a processing instruction 222 to the APG 210 of

the client 205. This processing instruction 222 is used by the APG 210 to identify the portion of

the devices belonging to the PUF array 260 to access. This processing instruction 222 may be a

random number. In some embodiments, the server 202 and the client 205 may have access to the

same random number generator or may have synchronized random number generators. In such

embodiments, the server 202 does not need to transmit the processing instruction 222 to the client

205 in order for the client 205 to generate the processing instruction 230 using the APG 210.

[0043] In some embodiments the ability of the client 205 to generate the response 230 may be

protected by a password such as the password 223b. In such embodiments, the address specifying

which device(s) in the PUF array 260 to access may be produced by combining the processing

instruction 222 with the password. As a non-limiting example, the client 205 may input the

password and the processing instruction into a hash function to produce the address in the PUF

array 260. As an example, if the PUF array 260 is represented as a two-dimensional array

containing 256 rows and 256 columns, 8 bits of the message digest can be used to find a first

coordinate X in the PUF array 260; the following 8 bits can be used to find a second coordinate Y.

QB\133502.00130\66678112.1

ATTORNEY DOCKET NO. 2019-026 (133502.00130)

13

[0044] The measurement of characteristics of individual PUF devices may not be perfectly

deterministic. As part of the Handshaking process, the server 202 may send additional information

to the client 205 for use in making generation of the processing instruction 230 more reliable. Such

information may include a checksum or other error-correcting information for use with error-

correcting codes, or other information or instructions used in response generation schemes to be

discussed later below. Upon receiving the processing instruction 230, the APG 210 may use the

additional to generate corrected response or exclude unreliable devices belonging to the PUF array

260 from the response generation process. The server may determine that certain devices of the

PUF array 260 are unreliable using the image 261 of the PUF array 260 and may transmit

information identifying unreliable devices to the client 205. The client 205 may also independently

determine that certain devices are unreliable such that both the server 202 and the client 205 agree

on devices which should be excluded. Other error-correction methods may also be employed.

[0045] One approach for dealing with non-zero error rates entails repeated measurement of the

characteristic(s) of the PUF devices forming a PUF array such as the PUF array 260. During

Enrollment, the server may issue each possible processing instruction repeatedly and track the

statistical distribution of values measured for each PUF device. The server may then determine

that certain PUF devices are “unreliable” and should not be used to generate responses and store

information to that effect. During Handshaking, the server may then transmit that information to

the client or the client may already store similar or identical information. Additional methods for

error reduction may be used to augment or replace the approach above. One such additional

method also entails repeatedly measuring each PUF device and assigning values to the measured

characteristic(s) of that PUF device based on the ranges of the measurement values. For instance

one value may be assigned to measurements that fall within a first range and another value assigned

to values in a second range exclusive of the first range, and so on. As long as the measured values

for a device remain within one range, that device may be used to produce a reliable value during

response generation. As before, devices which are “unreliable” (i.e., their measured values do not

remain within a single range, or deviate from that range with unacceptable frequency) may be

excluded from use in response generation and other procedures requiring reliable values.

[0046] The techniques disclosed above in connection with FIG. 2 may be applied to schemes in

which more than one encryption key is required and in schemes where one or more key pairs are

required (including asymmetric encryption schemes such as public/private key schemes, as one

QB\133502.00130\66678112.1

ATTORNEY DOCKET NO. 2019-026 (133502.00130)

14

non-limiting example). A message digest may be used to generate an address 𝐴 , 𝑥 , 𝑦 in

a PUF array or suitable cryptographic table. For example, with a two-dimensionally-indexed

256x256 cryptographic table, the first eight digits of the hash message can be the column address

xi and the next eight digits can be the row address yj. The private key 𝐶 , 𝐶 , , … ,𝐶 , is

then a stream of k binary bits located in the cryptographic table following address 𝐴 , . The

public processing instruction transmitted is 𝑃𝑢𝑏 , 𝑇 , . The communicating parties can

therefore separately use the private keys to encrypt and decrypt messages with symmetrical

encryption schemes such as AES or DES. The random number 𝑇 , can also be dynamically

changed to a different number, e.g., 𝑇 , , resulting in a different processing instruction, resulting

in different addresses 𝐴 , , and different private keys 𝐶 , . It is important to notice that in

this protocol, the communicating parties independently generate the keys from the random number

and find the same address in their cryptographic tables. The cryptographic table of each client

device is distinct from each other, and the method to extract the private key varies based on the

content stored in each table. This method to exchange keys needs to be changed to be applicable

to hash-based cryptography, as described below. Unlike the DSA presented above, the novel

scheme presented herein is a generic encryption method applicable to the exchange confidential

information. This generic method can encrypt messages in addition to being able to be used for

digital signatures. As noted above, embodiments disclosed herein may be used in conjunction

with public/private key encryption schemes without the need to publish or disclose the so-called

“public key,” as described further below.

[0047] FIG. 2 broadly describes embodiments where a PUF array (e.g., the PUF array 260) is used

to reduce or eliminate the need to exchange keys between parties prior to the exchange of encrypted

communications. Thus, embodiment 200 and related embodiments are compatible with numerous

encryption schemes. In the simplest such scheme, the response 230 are used directly as a shared

encryption key (i.e., for symmetric encryption). The client 205 and server 202 use information

describing the PUF array 260 to independently arrive at the same key 240 (or multiple keys 240).

In embodiment 200, both the client 205 and server 202 are depicted optionally using a key

generator 235 to produce keys 240 from the responses 230. The key generator 235 may employ

any suitable algorithm to generate keys including (but not limited to) using cryptographic hash

QB\133502.00130\66678112.1

ATTORNEY DOCKET NO. 2019-026 (133502.00130)

15

functions and/or other one-way functions, or approximately-one-way functions such as functions

which are effectively one-way unless a party has access to secret information (i.e., so-called

“trapdoor functions”). As one non-limiting example, the key generator 235 may implement an

algorithm which generates a public key from a private key input according to a particular

asymmetric encryption scheme, non-limiting examples of which include elliptic curve encryption,

Diffie-Hellman, El-Gammal, DSA, et al. In such instances, the responses 230 may be used as a

private key input to an acceptable key generation algorithm or a private key may be derived from

the response 230 using any suitable method. Along these lines, the client 205 and server 202 may

exchange encrypted information using any suitable encryption scheme once the key 240 (or keys

240) has been determined. The two parties may use symmetric encryption, asymmetric encryption,

or hybrid methods including key encapsulation techniques as non-limiting examples. Notably, in

certain embodiments, the client or server may encrypt a message or otherwise use a “public key”

without any requirement that this public key be known to any party other than the server 202 and/or

client 205. It will be understood that the term “public key” in this context is used to mean a key

that conforms to an asymmetric encryption scheme specifying “public” and “private” keys. Thus,

in the context of this disclosure, the term “complementary key” may be used to describe what is

frequently called a public key in asymmetric cryptography schemes.

[0048] Specific non-limiting examples of cryptographic schemes which may be augmented with

systems and method disclosed herein include: Kyber, Crystals-Kyber, FrodoKEM, LAC,

NewHope, NTRU, NTRU Prime, Round2, HILA5, Round5, SABER, Three Bears, McEliece,

NTS-KEM, BIKE, HQC, LEDAkem, LEDApkc, LEDAcrypt, LAKE, LOCKER, Ouroboros,

Ouroborus-R, Rollo, RQC, SIKE, Dilithium, Falcon, qTesla, GeMSS, LUOV, MQDSS, Rainbow,

Picnic, WOTS, WOTS+, FORS, SPHINCS+, and others. It will be appreciated that the examples

above represent disparate classes of encryptions schemes including lattice-based schemes, code-

based schemes, hash-bashed schemes, and so on. It will be further appreciated that embodiments

disclosed herein are applicable for use with these and many other schemes.

[0049] In order to better illustrate and describe embodiments herein, example embodiments where

a client and server employ hash-bashed cryptographic schemes to communicate, enabled by PUF

arrays will now be described. However, nothing herein is intended to limit embodiments to the

use of hash-bashed cryptographic schemes. FIG. 3 illustrates an example method suitable for use

with embodiments disclosed herein to generate multiple keys 340 from a single processing

QB\133502.00130\66678112.1

ATTORNEY DOCKET NO. 2019-026 (133502.00130)

16

instruction (e.g., the processing instruction 222). A 512-bit message digest 325 generated from a

processing instruction as described above is segmented into 32 fragments. Each fragment is 16

bits in length and is used to identify an address in a PUF array 360. A device or devices in the

PUF array at each address 326 may be measured to produce a response (e.g., a response 230) which

may be used as a key 340. For example, a set of devices, at location ‘0’ starting with a device at

the 16-bit address 𝐴 𝐴 …𝐴 may be measured to produce a response yielding a 256-bit-

long key 340 denoted by 𝑋 𝑋 …𝑋 . In some embodiments, 256 devices may be measured

to produce each key 340 while in other embodiments, fewer devices may be measured and a shorter

response may be used to generate a longer key using a hash function as one non-limiting example.

The keys 340 may be used in a symmetric and asymmetric encryption schemes. For instance, in

some embodiments, the keys 340 may be used as private keys from which public-keys may be

derived using a suitable one-way (or approximately one-way) cryptographic function. Non-

limiting examples of suitable one-way functions include public key generation functions, hash

functions such as SHA-1, SHA-2, SHA-3, SHA-512, SHA-256, SHA-384, SHA-512, MD5, MD6,

SWIFT, RIPEMD-160, bcrypt, Whirlpool, BLAKE2, BLAKE3, and others.

[0050] FIG. 4 shows an example embodiment 400 in which a server 402 communicates securely

with a client 405 using a hash-based cryptography (HBC) scheme enabled by the use of PUFs as

described above. Because the server 402 and the client 405 can both independently generate (or

access) information describing the PUF array 460, there is no need to directly exchange any keys

between the two parties. In this scheme, as described above, the server 402 stores an image 461

of a PUF array 460 belonging to (or otherwise controlled by or associate with) the client 405. In

the embodiment shown, the server 402 issues a processing instruction 422 to the client 402 via the

Handshaking process described above. At each handshake the server 402 and client 405

independently generate a set of N 256-bit of private keys {𝑋 , where i ϵ {0, N-1}. N is a parameter

chosen based on the length of the message to encrypt. The processing instruction 422 may be

converted into a message digest 425 generated from the processing instruction 422 using the hash

function 421a, for example. An address in the PUF array 460 and/or other instructions may be

extracted from the message digest 425 by either the server 402 or the client 405, as appropriate.

For example, the client 405 may use measurements of the PUF array 460 specified by the digest

425 to generate a ciphertext from a message, as described further below, and transmit the ciphertext

to the server 402. The server 402 may then decrypt the ciphertext 440 using device characteristics

QB\133502.00130\66678112.1

ATTORNEY DOCKET NO. 2019-026 (133502.00130)

17

stored in the image 461 of the PUF array 460 at a location (or locations) identified by the digest

425 to recover the message. Likewise, the server 402 may also encrypt a message using the image

461 of the PUF array 460 to form a ciphertext for transmission to the client 405. In this instance,

the client 405 may use characteristics of the PUF array 460 measured at a location (or locations)

within the PUF array 460 specified by the digest 425. In some embodiments, the server 402 and

client 405 may access a shared random number generator or have synchronized random number

generators. In such embodiments, the processing instruction 422 may be a random number

generated by the shared random number generator of independently generated by the server 402

and the client 405. In such embodiments, the server 402 may not need to send the processing

instruction 422 to the client 405. In other embodiments, the client 405 may generate a ciphertext

and transmit the processing instruction to the server 402, thereby allowing the server to recover a

plaintext message from the ciphertext.

[0051] The message digest 425 may be divided into a set of addresses {A0 … An} as illustrated in

FIG. 3 that identify locations of particular PUF devices in the PUF array 460 (or locations of data

associated with those devices in the image 461 of the PUF array 460). Generally, in certain

embodiments, the client 405 may divide the message 430 into fragments and express those

fragments as binary numbers. For each fragment, the client device may associate that fragment

with one of the addresses. The client device 405 may then access a PUF device belonging to the

PUF array 460 at the address associated with that fragment and measure a characteristic of that

PUF device. The client 405 may then encode each message fragment using a transformation based

on a value of that message fragment (e.g., the binary representation of that message fragment) and

the measured characteristic of the associated PUF device. Because only the server 402 and the

client 405 can measure (or retrieve) characteristics of the PUF devices belonging to the PUF array

460, only the server 402 can decrypt messages encrypted by the client 405. Similarly, only the

client 405 can decrypt messages encrypted by the client 402 using characteristics of the PUF array

460 of the client 405. For increased security, the message may be segmented into multiple

segments (i.e., blocks) and a new randomly generated processing instruction 422 may be used to

determine the cipher scheme for each segment of the message. The number of addresses in the set

of addresses may also be adjusted to allow the encryption of messages of various lengths. Further

details are discussed below.

QB\133502.00130\66678112.1

ATTORNEY DOCKET NO. 2019-026 (133502.00130)

18

[0052] In an example, the processing instruction 422 is used to generate the message digest 425

using a standard hash function (experimental validation was performed using SHA-3, for

example). Other suitable hash functions are MDA, SHA-1, and SHA-2, as non-limiting examples.

A message may be subdivided into multiple bitstreams, collectively used to form the addresses

{A0 … An}. In some embodiments, it may be desirable to specify a large number of addresses

(and/or a number of long address) using a single message digest 425 derived from a single

processing instruction 422. In hash-based cryptography schemes described herein, responses 430

to processing instructions 422 are used to generate keys 440 by repeatedly hashing the responses

430 using a hash function 421b. The hash function 421b may be the same as the hash function

421a, or the two hash functions 421a,b may be different from each other.

[0053] The process of decryption and encryption is illustrated by FIG. 5, which includes the flow

diagrams 500A and 500B corresponding to the encryption and decryption process respectively.

Starting with the private keys 𝑋 , (i.e., responses 530), the keys 𝑌 (i.e., keys 540) may

generated with 256 sequential hashing cycles as given by Equation 6:

𝑋 → 𝑌 𝐻 𝑋 where i ϵ {0, N-1}.

[0054] In departure from the generic HBC methods, both 𝑋 and 𝑌 are kept secret, and the only

public information is the data exchanged during the handshakes. In a second departure from the

generic HBC methods, the plaintext M (i.e., the message 599) to be encrypted is not hashed;

instead, it is converted to a digital stream and then segmented into N bytes (i.e., the values 535

denoted by {K0 … Ki … KN-1}. As shown below, for each handshake, it is practical to encrypt

messages that are up to 4,096-bits long (i.e., N = 512). Multiple handshakes may be needed for

longer messages, and each handshake may produce a new set of private keys 𝑋 .

[0055] The message M can be then written as Equation 7 as follows, with i ϵ {0, N-1}; k ϵ {0, N-

1}; 𝑚 , ϵ {0, 1}:

𝑀 𝑚 , …𝑚 , …𝑚 , 𝑚 , …𝑚 , …𝑚 , 𝑚 , …𝑚 , …𝑚 , .

[0056] Each of the N bytes of M can be written as an integer Ki ϵ {0, 256}. Thus, M = (K0), …

(Ki), … (KN-1). A ciphertext may be formed by generating a set of N 256-bit long streams Ci (i.e.,

the ciphertext fragments 545) with i ϵ {0, N-1} by repeatedly hashing the private keys 𝑋 (i.e., the

responses 530) using the hash function 521, as given by Equation 8:

QB\133502.00130\66678112.1

ATTORNEY DOCKET NO. 2019-026 (133502.00130)

19

𝐶 𝐻 𝑋 .

[0057] Unlike the digital signature scheme presented previously, the receiving party does not have

access to M, so the decryption process is different. The N streams 𝐶 , (i ϵ {0, N-1}) of the ciphertext

(i.e., the ciphertext fragments 545) are decrypted separately by hashing each stream multiple times

using the hash function 521 and comparing the result with the corresponding key 540 obtained by

hashing the responses 530 256 times using the hash function 521. The receiving party (e.g., a

client 205, 405) finds the value 𝐾 such that hashing the corresponding ciphertext fragment 545 𝐾

times yields the corresponding key 540 (i.e., the corresponding 𝑌 which in turn is equivalent to

the corresponding 𝑋 hashed 256 times). Combined together, the N separate solutions 𝐾 (i.e., the

values 535) generate the plaintext message 599 when concatenated. The hardware or software

implementations of hash functions such as SHA-2 are fast, and therefore the new encryption

scheme is quite rapid. The PUF-based key generation is also fast, because only the handshake is

needed at each generation cycle; therefore, a new set can be use frequently to enhance security.

Notably, the use of PUFs disclosed herein enables the practical use of multiple hashing as part of

a full encryption scheme for arbitrary messages instead of only being useful in the limited context

of digital signatures. This because both parties have secure access to the responses and can

generate all repeatedly hashed values described without the need to communicate or otherwise

share any additional information beyond the appropriate processing instruction (e.g., the

processing instruction 222, 422, 722). It will be understood that repeated hashing with a hash

function such as the hash function 521 in this and other examples is intended for purposes of

illustration only and that any suitable one-way cryptographic function(s), as described above, may

be used.

[0058] As illustrated by FIG. 6, the encryption scheme disclosed above can also operate as a digital

signature scheme. As shown in flow diagram 600A, a digital signature can be produced by

producing a message digest 695 of a plaintext message or other information using any suitable

hash function (not shown). The digest 695 is then treated as a message to be encrypted analogously

to the process illustrated in FIG. 4. The digest 699 is rendered into a series of integer values 635.

A set of responses 630 are generated as described above. Each of the N integer values 635 are

used to determine a number of times the corresponding response 630 will be hashed using the hash

function 621. In this example, each response 630 (i.e., each 𝑋) is hashed 256 𝐾 times,

QB\133502.00130\66678112.1

ATTORNEY DOCKET NO. 2019-026 (133502.00130)

20

producing a set of N ciphertext fragments 645. These fragments collectively serve as a signature

650 which can be verified as described below. A sending party (e.g., a client 205, 405) with access

to a PUF array (e.g., a PUF array 260, 460) image of a PUF array (e.g., an image 261, 461), or

other private cryptographic table can then send a message including the signature 650 to a

receiving party with access to the same information (e.g., a sever 202, 402).

[0059] The flow diagram 600B illustrates the process of verifying the signature 650 used to sign

a plaintext (not shown). The receiving party (e.g., the server 202 or server 402) receives the signed

plaintext and independently creates its own cryptographic digest 696 of the received message

(using the same hash function as the sending party) and coverts it into a series of values 636.

Because the two parties share access to the details of a PUF (or similar securely shared

information), the receiving party does not need to search for each of the values 636 (compare to

the flow diagram 500A). Instead, the receiving party independently determines the values 636

using its independently generated message digest 696. Once the values 636 are determined, the

receiving party only needs to determine that hashing each of ciphertext fragments 645 of the

signature 650 𝐾 times with the hash function 621 reproduces each of the keys 640 (i.e., each 𝑌)

which may be independently generated by hashing the responses 630 using the hash function 621

256 times. It will be understood that repeated hashing with a hash function such as the hash

function 621 in this and other examples is intended for purposes of illustration only and that any

suitable one-way cryptographic function(s), as described above, may be used.

[0060] The methods disclosed above implicitly assume that both the sending and receiving parties

can independently generate the same responses and thus derive identical keys given the same

processing instruction (e.g., processing instructions 222, 422). However, as a discussed above,

some of the responses obtained from a PUF array (e.g., PUF arrays 260, 460) may be non-

deterministic or may be subject to drift due to temperature, aging, and/or other effects. Thus, as

shown in FIG. 6 a server 702 may be equipped in some embodiments with a matching engine 750

configured to correct for discrepancies between responses 731 retrieved from an image 761 of a

PUF array 760 belonging to a client 705 and the responses 730 generated by the client 705 directly

from the PUF array 760. In some embodiments, the matching engine 750 may be configured to

generate error-correction information 724 based on statistical or other measurements of

characteristics of the PUF array 760 obtained as part of the Enrollment process. The error-

correction information 724 may contain checksum or other error-correction information for use by

QB\133502.00130\66678112.1

ATTORNEY DOCKET NO. 2019-026 (133502.00130)

21

the client 705 in order to correct errors in the responses 730 before hashing the responses 730 for

use in hash-based cryptography schemes disclosed herein.

[0061] As part of the Handshaking process, the server 702 may send the error-correction

information 724 to the client 705 for use in making generation of the responses 730 more reliable.

The instructions may include error correction instructions (sometimes called a “helper” or “helper

instructions”) and/or masking instructions. Error correction instructions may include a checksum

or other error-correcting information for use with error-correcting codes, or other information or

instructions used in response generation schemes to be discussed later below. Masking

instructions may instruct the client 705 exclude cells which the server 702 characterized as

unreliable cells during Enrollment. The client 705 may generate corrected responses which simply

exclude measurements of the unreliable cells. Alternatively the client 705 may measure additional

cells to ensure that the corrected responses are of a specified length. The client may store

instructions for selecting the additional cells to measure, or may receive such instructions as part

of the error-correction information 724.

[0062] Upon receiving the error-correction information 724, the client 705 may use additional

information contained in the error-correction information 724 to generate corrected responses. Use

of the error-correction information 724 and other methods of improving the reliability will be

discussed further below. The corrected responses 730 may be used to derive the encryption keys

740. The server 702 may similarly independently produce the encryption keys 740 using the initial

responses 730 stored in a database (e.g., database 104). The server 702 and the client 705 may

then communicate securely by encrypting messages using the shared encryption keys 740

according to methods disclosed herein.

[0063] In some embodiments, ternary PUF schemes may include characterizing each PUF device

in a PUF array (e.g., PUF arrays 160, 260, 460, 760). During Enrollment, the server issues each

possible processing instruction repeatedly and tracks the statistical distribution of values included

in the responses. The server then assigns the elements of each processing instruction

corresponding to individual PUF devices to one of three ternary states, which will be referred to

using the ternary digits {–, x, +}. Measured device characteristics which fall within a first range

of values are assigned the ternary value '–'. Measured device characteristics which fall within a

second range of values exclusive of the first range are assigned the ternary value '+'. Measured

QB\133502.00130\66678112.1

ATTORNEY DOCKET NO. 2019-026 (133502.00130)

22

device characteristics which fall within a third range of values exclusive of the first range and the

second range are assigned the ternary value 'x'.

[0064] For example, if the PUF devices are SRAM cells, the measured device characteristics may

be the frequency of the binary data states stored by the SRAM cells after power cycling. Cells

which are always (or almost always) in the ‘0’ state may be assigned to the ‘–’ ternary state, while

cells which always in the ‘1’ state may be assigned to the ‘+’ ternary state. Meanwhile, cells which

are “unreliable” fluctuate between the ‘0’ and ‘1’ state may be assigned to the ‘x’ ternary state.

The resulting ternary representations may be stored by the server in the database as initial

responses for the clients. The server may disregard values generated using unreliable cells when

comparing responses to expected processing instruction. In some embodiments, the may send

instructions to exclude previously-characterized unreliable cells to the client (e.g., as part of the

error-correction information 724). For example, if a processing instruction requires a 256-bit

response the instructions may instruct the client to select the first 256 devices which are not

excluded from the processing instruction generation process started at a given address, error rates

can be significantly reduced using this approach when a sufficiently large number of initial

responses are gathered in response to each processing instruction. In some embodiments the server

shares the location of the unreliable cells with the clients during the Enrollment process, thereby

reducing the size of the instructions transmitted by the server during subsequent authentication and

generation of responses by the clients since the clients are able to store the information necessary

to exclude the unreliable cells from the processing instruction generation process.

[0065] The value of using the ternary PUF methods above has been demonstrated with SRAM

PUF devices based on commercially-available SRAM. SRAM PUFs exploit power-off/power-on

cycles. Due to manufacturing variations, the flip-flop of each SRAM cell will randomly power up

in the ‘0’ state or the ‘1’ state. The vast majority of the cells respond in a predictable way, therefore

acting as a “fingerprint” of the device. The SRAM PUFs characterized exhibited a cumulative 3-

5% CRP rate after each power-off/power-on cycle. The memory cells were then subjected to

successive power-off/power-on cycles and cells exhibiting inconsistent behavior were deemed

unreliable and represented by the ternary ‘x’ state as described above. After 50 cycles, the ‘x’

state was assigned to 10% of the cells. For the remaining cells which were not assigned the ‘x’

state, the error rate was in the 0.01–0.03% range.

QB\133502.00130\66678112.1

ATTORNEY DOCKET NO. 2019-026 (133502.00130)

23

[0066] In other embodiments, the matching engine 770 may implement methods used in response-

based cryptography. As an example, the error-correction information 724 may cause the client

705 to transmit information to the server 702 (in addition to any encrypted message transfer) that

allows the server 702 to detect errors in the private keys (i.e., the responses 730) generated by the

client 705 and ultimately used to generate corresponding keys 740 (or complementary keys) used

to encrypt a message. The server 702 may then use the matching engine 750 to align the private

keys (i.e., the responses 731) obtained from the image 761 of the PUF array 760 with the private

keys (i.e., the responses 730) generated by the client 705 using the PUF array 760.

[0067] FIG. 8 shows details of an embodiment 800 wherein a server 802 uses a response-based

cryptography engine (RBCE 515) suitable for use as the matching engine 750 of FIG. 7. to

authenticate a client 805 (and also agree upon an encryption key with the client) when the error

rate of an APG 810 with a PUF array 860 is non-zero. During Authentication, the client 805

receives the processing instruction 822 from the server 802. The server 802 stores initial responses

830 generating during enrollment in a database 804. The client 805 generates an encryption key

840 (e.g., using the processing instruction 822/response 830) and encrypts an authentication

message 842 with the encryption key 840 to produce the ciphertext 844 and transmits it to the

server 802 which uses the RBCE 515 to authenticate the client 505 and generate a matching

encryption key 840. The server 802 may use the RBCE 515 to encrypt the same authentication

message 842 with one or more encryption keys derived from expected response to the processing

instruction 822 stored in the initial responses 830 for use in determining same encryption key 840

as the client 805. If encrypting the authentication message 842 with one of the server-generated

encryption keys reproduces the client-generated ciphertext 844, the server may use that key to

encrypt further communications with the client 805.

[0068] For example, the RBCE may use the expected response 830 (denoted initial response

530(0)) to indicate a Hamming distance of zero from the corresponding initial response 830 to

generate an expected key 840 (denoted by key 840(0)) and encrypt the authentication message 842

with the key 840(0) to produce an expected ciphertext 844 (denoted by ciphertext 844(0). In order

to account for possible CRP errors at the client 805, the RBCE 815 may generate additional

responses with various Hamming distance from the expected response 830, derive additional keys

540 from those responses and produce additional ciphertext 844. For example, the RBCE 815 may

generate a set of responses 830(1) having a Hamming distance of one from the expected response

QB\133502.00130\66678112.1

ATTORNEY DOCKET NO. 2019-026 (133502.00130)

24

830, generate corresponding encryption keys 840(1), and encrypt the authentication message 842

with each of those keys to produce corresponding ciphertext 544(1). The RBCE 815 may also

similarly generate ciphertext 844(2) and 844(3) from the authentication message 842 and the

respective responses 830(2) and 830(3) which are sets of responses which differ from the expected

response 830 by Hamming distances of two and three, respectively. In some embodiments, the

RBCE 815 may be configured to produce additional ciphertexts as described above using

responses which differ from the expected response 830 by even greater Hamming distances. In

some embodiments, the server 802, rather than independently generating one or more ciphertexts,

may instead decrypt the ciphertext 844 received from the client 805 and verify that resulting

plaintext is the expected authentication message 842 for the client 805. In other embodiments, the

server 802 may compute additional ciphertexts before receiving the client-generated ciphertext

844, thereby lowering latency of the Authentication phase. In some such embodiments, the

additional responses may be pre-computed and stored by the server at any time after the Enrollment

phase.

[0069] In some embodiments, a client 805 may transmit a public encryption key to the server 502

instead of an encrypted authentication message 842 (e.g., a ciphertext 844). The public encryption

key may be generated by the client 805 using the encryption key 840 as a private-key input to an

asymmetric key generation algorithm, resulting in a private/public key pair according to an

acceptable asymmetric encryption scheme. The server 802 may then independently generate such

a public key using expected responses derived from the initial responses 830 generated during

Enrollment. Non-limiting examples of acceptable asymmetric encryption schemes include Elliptic

Curve Cryptography (ECC), lattice cryptography schemes, code-based cryptography schemes,

multivariate cryptography, and others.

[0070] FIGs. 9A and 9B are tables illustrating performance tradeoffs in hash-bashed schemes such

as the HBC scheme illustrated in FIGs. 4-5. FIG 9A shows the number N of 256-bit long streams

𝑋 needed to encrypt a message M of a certain length. For example, N=16 is needed to encrypt

a 128-bit long message, N=32 is needed to encrypt a 256-bit long message, and N=1,024 for an

8,192-bit long message. Increasing the number of hashing cycles used to generate each public key

𝑌 from each private key 𝑋 from 256 to 4096 requires creates 50% fewer fragments from each

message. Accordingly, fewer private keys must be hashed into public keys and fewer

corresponding public keys must be hashed to encrypt the message. However, the benefit of

QB\133502.00130\66678112.1

ATTORNEY DOCKET NO. 2019-026 (133502.00130)

25

hashing fewer keys is offset by the increased latency resulting from hashing each key many more

times (e.g., hashing each private key 256 times to create a public key as opposed to hashing each

private key 4,096 times to create that public key). This tradeoff is illustrated in FIG. 9B, which

illustrates the number of hashing operations required. For example, 128,000 hashing cycles are

needed to encrypt 8,192-bit long plaintexts when the plaintexts are divided into 256-bit segments

and the private keys are hashed 256 times; however, 1,800,000 hashing cycles are needed when

the plaintexts are divided into 4,096-bit fragments and the private keys are hashed 4,096 times.

[0071] The schemes above may be modified to further enhance security by increasing the

computational complexity of the decryption process. In the embodiments above, the message is

subdivided into the individual blocks, 𝑀 , and integer values of those blocks are used as values

(e.g., the values 535, 635 of FIGs. 5–6) that determine how many times each private key 𝑋 is

hashed. As described above, each message block 𝑀 is used to hash a particular private key 𝑋 .

In some embodiments, each message block may be divided into multiple segments, each of which

is used to produce a distinct integer value. Encryption and decryption using these embodiments

are illustrated in a general fashion by FIG. 10.

[0072] As shown in FIG. 10, a set of N message blocks 1099 denoted {M0 … Mi … MN-1} of a

message to be encrypted are used to produce the values 1035 denoted {K0 … Ki … KN-1} and the

values 1037 denoted {L0 … Li … LN-1}. In certain embodiments, the message blocks 1099 are

optionally used to produce the additional values 1039 denoted {P0 … Pi … PN-1}. Each set of

values {Ki, Li, Pi} is associated with the message block 1099 used to produce it, denoted by Mi.

Encryption is achieved using one or more values extracted from each message block (e.g., the

values and optionally the values 1039) to identify, from a set of responses 1030 (e.g., responses

130, 430, 530, 630) a particular response 1031 corresponding to the selected values to be used as

a private key denoted 𝑋 . That private key (the response 1031) is then repeatedly hashed using

the hash function 1021, with the number of repetitions determined by the value 1035 (Ki)

corresponding to the message block 1099, thereby producing a corresponding ciphertext fragment

1045 denoted Ci In this example and other examples herein the number of repetitions is 256-Ki.

However, it should be understood that the choice of 256 is a design choice and that any suitable

number may be used in various applications.

QB\133502.00130\66678112.1

ATTORNEY DOCKET NO. 2019-026 (133502.00130)

26

[0073] Decryption works similarly to the methods described in connection with FIG. 5. However,

instead of repeatedly hashing each ciphertext fragment 1045 (e.g., a ciphertext fragment 545) and

comparing it to a single public key 1040 (e.g., a public key 240, 440, 540), the receiving party

must compare all possible public keys 1040 against each ciphertext fragment 1045 after repeated

hashing using the hash function 1021. The values 1035, 1037, 1039 ({K ,L ,P}) that result in a

matching public key 1040 for each ciphertext fragment 1045 can then be used to reconstruct the

corresponding message block 1099, as described further below in connection with particular

example embodiments.

[0074] Signing and verification of messages of the embodiments above described in connection

with FIG. 10 and the example embodiments which follow can be performed in the same manner

as described in connection to FIG. 6, with the same modifications made in determining the correct

private key Xi corresponding to each message block 1099.

[0075] In one example embodiment, each message block 1099 (Mi) is divided into two segments,

denoted Ki and Li. The private keys Xi that are 256-bit long for i ϵ {0, 255}, the key hashed multiple

times is Yi = H256(Xi), and the message to encrypt M is 512-bit long. The message M can be written

as a set of 32 blocks (e.g., the message blocks 1099) which are 16-bits long, as given by Equation

9:

𝑀 𝑀
,

𝑚 , . .𝑚 , . .𝑚 , … , 𝑚 , . .𝑚 , . .𝑚 , … , 𝑚 , . .𝑚 , . .𝑚 ,

𝑤ℎ𝑒𝑟𝑒 𝑖 𝜖 0, 31 𝑎𝑛𝑑 𝑗 𝜖 0, 15

[0076] Each block Mi = (mi,0… mi,j… mi,15) is divided into two 8-bit segments as given by Equation

10, as one non-limiting example:

𝐿 𝑚 , . . .𝑚 , 𝑎𝑛𝑑 𝐾 𝑚 , …𝑚 ,

[0077] Both Li and Ki are integer numbers ϵ {0, 255}. The key 𝑋 identified by the index Li is

hashed 256-Ki times. This is contrast to embodiments illustrated by FIG. 5 where the key hashed

to encode the i-th message block 𝑀 is always the i-th key 𝑋 . The resulting ciphertext, C, is given

by Equation 11:

𝐶 𝐶 𝐻 𝑋

QB\133502.00130\66678112.1

ATTORNEY DOCKET NO. 2019-026 (133502.00130)

27

𝐶 𝐻 𝑋 , … ,𝐶 𝐻 𝑋 , … ,𝐶 𝐻 𝑋

[0078] The decryption scheme is similar to the one illustrated in FIG. 5 with an additional search

needed at each step. Instead of simply finding the correct value for Ki by repeatedly hashing the

i-th ciphertext fragment until it matches the i-th public key it is now necessary to compare each

repeatedly-hashed ciphertext fragment against all possible public keys. When the 256 possible

hashed keys are stored in a content addressable memory (CAM), the additional latency introduced

over the scheme(s) of FIG. 5 is low. The knowledge of the 32 values for each of Ki and Li (e.g.,

the values 1035, 1037) allows decryption of the message M (e.g., the message blocks 1099). That

is, in this example, each message block 1099 is simply a concatenation of the bits representing the

corresponding values {Ki, Li}. It will be understood, however, that any suitable method of

extracting {Ki, Li} from the corresponding message block Mi may be used and any method of

transforming the values{Ki, Li} back into the corresponding message block Mi may be used.

[0079] Such a modified scheme can provide stronger encryption over the scheme(s) illustrated by

FIG. 5, allowing longer messages to be encrypted while reducing the utility of attacks based on

frequency analysis. The probability of any unique pairing {Ki, Li} occurring is (1/256)2 or

approximately 1.53 x 10-5. Accordingly, if a 1 Mbit-long message is encrypted, an average of only

8 blocks may be duplicated as compared to 2,000 blocks with some schemes.

[0080] In the previous example embodiment, it is assumed that there are 256 private keys Xi. In

another example of embodiment, there are multiple possible keys Xi (e.g., Xi,j, where j ϵ {0, 255}

and i ϵ {0, 255}) for each message fragment Xi, rather than using two public keys, Xi,0 and Xi,0, as

in Lamport DSA. Let us assume that the private keys Xi,j are 256-bits long and that the

corresponding public keys Yi,j = 𝐻 𝑋 , 𝐻 𝑋 . If the message to be encrypted is 512-

bits long, the message M can be written according to Equation 12:

𝑀 𝑀
,

 𝑚 , . .𝑚 , . .𝑚 , … , 𝑚 , . .𝑚 , . .𝑚 , … , 𝑚 , . .𝑚 , . .𝑚 ,

𝑤ℎ𝑒𝑟𝑒 𝑖 𝜖 0, 31 𝑎𝑛𝑑 𝑘 𝜖 0, 15

[0081] Each message block be broken into two 8-bit segments, according to Equation 13, as one

non-limiting example:

𝑃 𝑚 , . . .𝑚 , ; 𝐾 𝑚 , …𝑚 , .

QB\133502.00130\66678112.1

ATTORNEY DOCKET NO. 2019-026 (133502.00130)

28

[0082] As before, the values of Ki may be used to determine the number of times the corresponding

private key is hashed (i.e., 256-Ki times). But now, the private key is one of 256 possible private

keys identified by the index i together with corresponding value of Pi and the resulting ciphertext

in this scheme is given by Equation 14:

𝐶 𝐶 𝐻 𝑋 ,

𝐶 𝐻 𝑋 , , … ,𝐶 𝐻 𝑋 , , … ,𝐶 𝐻 𝑋 ,

[0083] The decryption scheme is similar to the one described above. It is now necessary to find a

match with the 256 possible hashed keys. The match will simultaneously uncover both Ki and Pi.

When the 256 possible hashed keys are stored in a content addressable memory (CAM), the

additional latency of such a combined scheme is small. The knowledge of the 32 values for each

of Ki and Pi allows reconstruction of the unencrypted message M. The probability to find twice

the same combination of Ki and Pi is: (1/256)2 = 1.53 x 10-5. Accordingly, for a 1-Mbit-long

message, on average 15 ciphertext blocks may have the same values, compared with 3,800 blocks

in some schemes.

[0084] This scheme may be useful when PUF devices are used to generate the private keys. The

different possible responses (i.e., private keys) corresponding to each possible value of Pi may

correspond to different areas within the PUF device and/or different physical addresses, reducing

the likelihood of correlations between the keys. In some embodiments, multiple PUF devices may

be used and the values of Pi may index devices or ranges of devices in different PUF arrays,

depending upon the value of Pi. Thus, even if an attacker comprises a particular portion of a PUF

array or memory locations used to store PUF data, an attacker may still be prevented from

compromising the encryption.

[0085] Elements of the two schemes above can be combined into a third example scheme. In this

scheme, each message block is 24-bits long. If the message is 768-bits-long, the message M can

be as Equation 15:

𝑀 𝑀
,

 𝑓𝑜𝑟 𝑓 𝜖 0, 31 𝑎𝑛𝑑 𝑘 𝜖 0, 23

 𝑚 , . .𝑚 , . .𝑚 , … , 𝑚 , . .𝑚 , . .𝑚 , … , 𝑚 , . .𝑚 , . .𝑚 ,

QB\133502.00130\66678112.1

ATTORNEY DOCKET NO. 2019-026 (133502.00130)

29

[0086] Each message block can be separated into three 8-bit values according to Equation 17, as

one non-limiting example:

𝐿 𝑚 , . . .𝑚 , ; 𝑃 𝑚 , . . .𝑚 , ; 𝐾 𝑚 , …𝑚 ,

[0087] In this example scheme, the value 𝐾 still determines the number of times the corresponding

private key is hashed (i.e., 256-Ki). However, the private key is now indexed using both Li and Pi,

meaning that up to 2562 distinct private keys 𝑋 , may be indexed and the resulting ciphertext

may be given by Equation 16:

𝐶 𝐶 𝐻 𝑋 ,

𝐶 𝐻 𝑋 , , … ,𝐶 𝐻 𝑋 , , … ,𝐶 𝐻 𝑋 ,

[0088] Decryption scheme is similar to the methods described above. However, up to 2562 public

keys must be searched to determine whether repeated hashing Ki times of each ciphertext fragment

matches one of the public keys. Determine the values {Ki, Li, Pi} that produce one of the public

keys for each ciphertext fragment allows the corresponding unencrypted message block Mi to be

determined. When the 256 x 256 possible hashed private keys (i.e., the public keys) are stored in

a content addressable memory (CAM), the keys may be searched with acceptably low latency.

The probability of producing any unique set of values for {Ki, Li, Pi} is: (1/256)3 (approximately

6 x 10-8). If a file of 100 Mbit is encrypted, on average 6 blocks may have the same value as

compared to 400,000 blocks using some schemes.

[0089] If the messages to encrypt are smaller, it will be desirable to reduce the number of possible

locations (Li) and positions (Pi) to reduce latency. As before, the choice of particular parameters

(e.g., 256 keys and 32 message blocks) presented in this example and others examples are for the

purposes of illustration and any acceptable values for these and other parameters may be used in

various applications.

[0090] The methods presented in this disclosure may include various additional features. As one

non-limiting example, because PUFs described herein are physical which may experience drift due

aging, temperature, and other effects, ternary PUF devices, error correction methods, and response-

based cryptography techniques may be employed to reduce error rates and improve reliability of

PUF-based cryptosystems for use with embodiments disclosed herein. As another example,

QB\133502.00130\66678112.1

ATTORNEY DOCKET NO. 2019-026 (133502.00130)

30

cryptographic transpositions can be added to the methods described in this disclosure by using the

message digest generated by the random number of the handshake to generate instructions to re-

order elements of the cipher. Both communicating parties can independently access these

instructions. As yet another example, the use of content-addressable memories such as CAMs

based on DRAM technology may be incorporated into embodiments to lower costs.

[0091] Various example embodiments herein describe methods of using an expanded number of

possible private keys that include, as non-limiting examples, allowing multiple possible private

keys for each message block and indexing expanded sets of keys in various ways, including, for

example, using two values (described as “position” and a “location”). It will be understood that

these examples are for the purposes of illustration and that any other suitable methods may be

used. For example, keys may be indexed by a single index value with greater bit-length than

described in the examples. As another example, private keys may be indexed using any suitable

numbers of indexing values, including three or more values, and so on, or any other acceptable

scheme.

[0092] Systems and methods disclosed herein may be understood by way of various example

embodiments. In one example embodiment, an encryption method uses multiple sequential

hashing, combined with random ordering of the private keys generated with addressable physical

unclonable functions. During an enrollment cycle, a server receives the initial readings of a

physical unclonable function device belonging to a client device and stores them in an addressable

look-up table. To initiate an encryption cycle, the first communicating party (the server) generates

a random number, which is transmitted to the second communicating party (the client). Both

communicating parties independently use the random number to find a set of addresses that are

used to generate a set of N private keys. The first communicating party uses the look up table,

while the second communicating party use the physical unclonable function. Both parties

independently hash the private keys N times, generating a set of hashed keys (i.e., public keys).

[0093] To encrypt a message, the first communicating party converts the message into digital data

streams, then group it into blocks. Each block, which is a digital stream, is converted into two

decimal numbers L and K. The first decimal number L is used to find the location of one of the N

private keys, and the second decimal number K is used to hash the “private key” N-K times. The

QB\133502.00130\66678112.1

ATTORNEY DOCKET NO. 2019-026 (133502.00130)

31

cipher communicated is the combined stream of the message digests originating from the blocks

of the message to encrypt. Values of L and K are computed for each block.

[0094] To decrypt the resulting ciphertext, the receiving party analyses the message digests. Each

message digest is incrementally hashed several times. At each hashing step the resulting message

digest is compared with all the hashed keys (i.e., public keys) generated from the private keys

during the handshake step. When a final match is obtained, the number of hashes used in the

process is equal to correct value of K for that block, and the location of the matching public key

determines the correct value of L for that block. The entire message is thereby retrieved by putting

all blocks together, and converting them into a digital stream.

[0095] Other example embodiments combine multiple sequential hashing with multiple private

keys per location and use a modified encryption process. To initiate an encryption cycle in these

embodiments, the first communicating party generates a random number, which is transmitted to

the second communicating party. Both communicating parties independently use the random

number to find a set of addresses that are used to generate a set of N x M private keys. The first

communicating party uses the look up table, while the second communicating party use the

physical unclonable function. Both parties independently hash the private keys N times, generating

the set of “hashed keys” (“public keys”).

[0096] To encrypt a message, the first communicating party converts the message into a digital

data stream, then groups it into blocks. Each block, which is a digital stream, is converted into two

decimal numbers P and K. The first decimal number P is used to find the position of one of the M

“private keys” located at a sequential location determined by the block number (i.e., the first

location corresponds to the first block, the second location to the second block, and so on), and the

second decimal number K is used to determine how many times to hash the corresponding private

key (i.e., N-K times). The transmitted ciphertext is the combined stream of the message digests

(ciphertext blocks) originating from the blocks of the message to encrypt.

[0097] To decrypt the ciphertext, the receiving party analyses the message digests. Each

ciphertext block is incrementally hashed several times. At each hashing step the new message

digest is compared with the corresponding hashed keys (public keys) generated from the private

keys key during handshake. When a final match is obtained for each block, the number of hashes

used in the process is equal to the value of K for that block, and the position is equal to the value

QB\133502.00130\66678112.1

ATTORNEY DOCKET NO. 2019-026 (133502.00130)

32

of P for that block. The entire message is thereby retrieved by putting all the decrypted blocks

together, and converting them into a digital stream.

[0098] In other embodiments multiple hashing is used together with multiple private keys at each

location and these keys are used in random orderings. To encrypt a message, the first

communicating party converts the message into a digital data streams, then groups it into blocks.

Each block, which is a digital stream, is converted into three decimal numbers L, P, and K

corresponding to that block. The first decimal number L is used to find the location of one of the

private keys, the second decimal number P is used to find the position of the selected private key

located at location specified by L, and the third decimal number K is used to determine how many

times to hash the private key corresponding to the current message block (i.e., N-K times). The

transmitted ciphertext communicated is the combined stream of message digests produced during

the encryption process.

[0099] To decrypt the ciphertext, the receiving party analyses the message digests. Each message

is incrementally hashed several times. At each hashing step the resulting message digest is

compared with all the N x M hashed keys (public keys) generated from the private keys during

handshaking. When a final match for each block is obtained, the number of hashes used in the

process is equal to the correct value of K for that block, and the location of the correct key identifies

the correct value of L for that block, while the position of the correct public key determines the

correct value of P for that block. The entire message is retrieved by putting all the decrypted

blocks together, and converting them into a digital stream.

[00100] Any acceptable hashing or other schemes may be used including, as non-limiting

examples: Winternitz, W-OTS, Merkle Signature Schemes, MSS, or XMSS. In embodiments

using random key ordering, any acceptable scheme(s) may be used including, as non-limiting

examples, HORS, SHINCS, or derivatives thereof. In embodiments multiple address schemes,

any acceptable scheme(s) may be used including, as non-limiting examples, Lamport DSA and

derivatives thereof.

[00101] Nonlimiting examples of acceptable physical unclonable function (PUF)

technologies for use with embodiments herein include PUFs based on SRAM, Flash memory,

DRAM, MRAM, Resistive RAM, memristor, CBRAM, ring oscillators, gate delay PUFs, or

FPGAs. Additional randomization may be used to spread the location of the cells selected to

QB\133502.00130\66678112.1

ATTORNEY DOCKET NO. 2019-026 (133502.00130)

33

generate the private keys from the look up tables and addressable PUFs. In addition, multiple

handshakes may be used to encrypt longer messages, or enhance security in embodiments

disclosed herein.

[00102] The described features, advantages, and characteristics may be combined in any

suitable manner in one or more embodiments. One skilled in the relevant art will recognize that

the various embodiments may be practiced without one or more of the specific features or

advantages of a particular embodiment. In other instances, additional features and advantages may

be recognized in certain embodiments that may not be present in all embodiments.

[00103] It should be understood that, unless explicitly stated or otherwise required, the

features disclosed in embodiments explicitly described herein and elsewhere in this disclosure may

be used in any suitable combinations and using various suitable parameters. Thus, as a non-

limiting example, any method described herein or any other suitable method may be used to

determine measurement parameters of for measuring the characteristics of PUF device. As a non-

limiting example, the message length, the size of message fragments, address lengths, the size of

PUF arrays used and other parameters may be varied as desired for different applications. It should

also be understand that while memristor-based PUF devices are discussed in the examples herein,

they are intended as non-limiting examples of suitable PUF technologies. It should also be

understood that although examples herein disclose hashing responses or private keys 256 times,

that nothing herein is intended to require the use of 256 hashing cycles to generate the keys used

for the hash-based encryption/decryption processes disclosed herein and that other suitable values

may be chosen. It should also be understood that descriptions of repeated hashing with a hash are

intended for purposes of illustration only and that any suitable one-way cryptographic function, as

described above, may be used.

QB\133502.00130\66678112.1

ATTORNEY DOCKET NO. 2019-026 (133502.00130)

34

CLAIMS

The invention claimed is:

1. A system, comprising:

a processor, and memory coupled to the processor, the memory storing:

device data representing measured device characteristics of physical-unclonable-

function (“PUF”) arrays having pluralities of PUF devices, each PUF array

belonging to one of a plurality of computing devices, wherein each computing

device of the plurality of computing device is part of a network of computing

devices; and

executable instructions that, when executed by the processor, cause the processor

to:

transmit a processing instruction to a remote device, wherein the remote

device is configured to use the processing instruction to determine a set

of PUF devices belonging to the PUF array of the remote device and

measure characteristics of those PUF devices;

determine expected measurement values of characteristics of the set of PUF

devices measured by the remote device by using the processing

instruction to identify and retrieve a subset of the device data stored in

the memory and associated with the set of PUF devices measured by

the remote device;

derive a set of encryption keys from the expected measurement values; and

communicate with the remote device by performing a cryptographic

operation secured by the set of encryption keys that includes:

segmenting a first data stream into a first plurality of data stream

fragments;

segmenting a first data stream fragment of the first plurality of data

stream fragments into a first numeric value and a second

numeric value;

identifying, using the first numeric value, a first encryption key of

the set of encryption keys; and

QB\133502.00130\66678112.1

ATTORNEY DOCKET NO. 2019-026 (133502.00130)

35

applying a one-way cryptographic function to the first encryption

key a first number of times determined by the second numeric

value to generate a transformed fragment having a value that

depends on the values of the first numeric value and the second

numeric value from the first data stream fragment and a value

of the first encryption key.

2. The system of claim 1, wherein the instructions, when executed by the processor to

 perform the cryptographic operation, cause the processor to:

receive, as a second data stream, a ciphertext generated by the remote device;

extract a second data stream fragment from the second data stream; and

for a second encryption key in the set of encryption keys:

repeatedly apply the one-way cryptographic function to the second data

stream fragment a second number of times to produce an intermediate

result that is equivalent to a result of repeatedly applying the one-way

cryptographic function to the second encryption key the second number

of times;

output, as a decrypted value of the second data stream fragment an output

value including the second number of times the one-way cryptographic

function was repeatedly applied to the second data stream fragment and

a third numeric value associated with the second encryption key.

3. The system of claim 1, wherein the instructions, when executed by the processor to

perform the cryptographic operation, cause the processor to:

identify, using the first numeric value, the first encryption key of the set of

encryption keys by using the first numeric value as an index value in accessing

an encryption key array that includes the set of encryption keys; and

determining the first number of times by subtracting the second numeric value from

a predetermined number.

QB\133502.00130\66678112.1

ATTORNEY DOCKET NO. 2019-026 (133502.00130)

36

4. The system of claim 1, wherein the instructions, when executed by the processor to

 issue the processing instruction to the remote device, cause the processor to:

transmit error correction information to the remote device that enables the remote

device to correct erratic measurements of the set of PUF devices determined

using the processing instruction.

5. The system of claim 4, wherein the memory stores further instructions that, when

executed by the processor cause the processor to receive information from the remote

device associated with measurements of the characteristics of the set of PUF devices

determined using the processing instruction to:

determine that actual measurement values of characteristics of the set of PUF

devices determined using the processing instruction and measured by the

remote device in response to the processing instruction differ from stored

measurement values of the characteristics of the set of PUF devices

determined using the processing instruction in the device data stored in the

memory; and

apply an error-correction algorithm to stored measurement values of the

characteristics of the set of PUF devices determined using the processing

instruction in the device data stored in the memory to produce the expected

measurement values used to generate the one or more encryption keys.

6. The system of claim 1, wherein the one-way cryptographic function includes at least one

of a SHA-1, SHA-2, SHA-3, SHA-224, SHA-256, SHA-384, SHA-512, MD5, MD6, and

SWIFT function.

7. A system, comprising:

a processor, and memory coupled to the processor, the memory storing:

device data representing measured device characteristics of at least one physical-

unclonable-function (“PUF”) device; and

executable instructions that, when executed by the processor, cause the processor

to:

QB\133502.00130\66678112.1

ATTORNEY DOCKET NO. 2019-026 (133502.00130)

37

derive a set of encryption keys from the measured device characteristics of

the at least one PUF device; and

communicate with a remote device by performing a cryptographic operation

secured by the set of encryption keys that includes:

segmenting a first data stream into a first plurality of data stream

fragments;

segmenting a first data stream fragment of the first plurality of data

stream fragments into a first numeric value and a second

numeric value;

identifying, using the first numeric value, a first encryption key of

the set of encryption keys; and

applying a one-way cryptographic function to the first encryption

key a first number of times determined by the second numeric

value to generate a transformed fragment having a value that

depends on the values of the first numeric value and the second

numeric value from the first data stream fragment and a value

of the first encryption key.

8. The system of claim 7, wherein the instructions, when executed by the processor to

 perform the cryptographic operation, cause the processor to:

receive, as a second data stream, a ciphertext generated by the remote device;

extract a second data stream fragment from the second data stream; and

for a second encryption key in the set of encryption keys:

repeatedly apply the one-way cryptographic function to the second data

stream fragment a second number of times to produce an intermediate

result that is equivalent to a result of repeatedly applying the one-way

cryptographic function to the second encryption key the second number

of times;

output, as a decrypted value of the second data stream fragment an output

value including the second number of times the one-way cryptographic

QB\133502.00130\66678112.1

ATTORNEY DOCKET NO. 2019-026 (133502.00130)

38

function was repeatedly applied to the second data stream fragment and

a third numeric value associated with the second encryption key.

9. The system of claim 7, wherein the instructions, when executed by the processor to

perform the cryptographic operation, cause the processor to:

identify, using the first numeric value, the first encryption key of the set of

encryption keys by using the first numeric value as an index value in accessing

an encryption key array that includes the set of encryption keys; and

determining the first number of times by subtracting the second numeric value from

a predetermined number.

10. The system of claim 7, wherein the instructions, when executed by the processor cause

the processor to:

issue a processing instruction to the remote device; and

transmit error correction information to the remote device that enables the remote

device to correct erratic measurements of a set of PUF devices determined using

the processing instruction.

11. The system of claim 10, wherein the memory stores further instructions that, when

executed by the processor cause the processor to receive information from the remote

device associated with measurements of the characteristics of the set of PUF devices

determined using the processing instruction to:

determine that actual measurement values of characteristics of the set of PUF

devices determined using the processing instruction and measured by the

remote device in response to the processing instruction differ from stored

measurement values of the characteristics of the set of PUF devices

determined using the processing instruction in the device data stored in the

memory; and

apply an error-correction algorithm to stored measurement values of the

characteristics of the set of PUF devices determined using the processing

QB\133502.00130\66678112.1

ATTORNEY DOCKET NO. 2019-026 (133502.00130)

39

instruction in the device data stored in the memory to produce the expected

measurement values used to generate the one or more encryption keys.

12. The system of claim 7, wherein the one-way cryptographic function includes at least one

of a SHA-1, SHA-2, SHA-3, SHA-224, SHA-256, SHA-384, SHA-512, MD5, MD6, and

SWIFT function.

13. A method, comprising:

deriving a set of encryption keys from measured device characteristics of at

least one PUF device; and

communicating with a remote device by performing a cryptographic

operation secured by the set of encryption keys that includes:

segmenting a first data stream into a first plurality of data stream

fragments;

segmenting a first data stream fragment of the first plurality of data

stream fragments into a first numeric value and a second

numeric value;

identifying, using the first numeric value, a first encryption key of

the set of encryption keys; and

applying a one-way cryptographic function to the first encryption

key a first number of times determined by the second numeric

value to generate a transformed fragment having a value that

depends on the values of the first numeric value and the second

numeric value from the first data stream fragment and a value

of the first encryption key.

14. The method of claim 13, further comprising:

receiving, as a second data stream, a ciphertext generated by the remote device;

extracting a second data stream fragment from the second data stream; and

for a second encryption key in the set of encryption keys:

QB\133502.00130\66678112.1

ATTORNEY DOCKET NO. 2019-026 (133502.00130)

40

repeatedly applying the one-way cryptographic function to the second data

stream fragment a second number of times to produce an intermediate

result that is equivalent to a result of repeatedly applying the one-way

cryptographic function to the second encryption key the second number

of times; and

outputting, as a decrypted value of the second data stream fragment an

output value including the second number of times the one-way

cryptographic function was repeatedly applied to the second data

stream fragment and a third numeric value associated with the second

encryption key.

15. The method of claim 13, further comprising:

identifying, using the first numeric value, the first encryption key of the set of

encryption keys by using the first numeric value as an index value in accessing

an encryption key array that includes the set of encryption keys; and

determining the first number of times by subtracting the second numeric value from

a predetermined number.

16. The method of claim 13, further comprising:

transmitting error correction information to the remote device that enables the remote

device to correct erratic measurements of a set of PUF devices determined using

a processing instruction.

17. The method of claim 16, further comprising:

receiving information from the remote device associated with measurements of

the characteristics of the set of PUF devices determined using the

processing instruction to:

determining that actual measurement values of characteristics of the set of PUF

devices determined using the processing instruction and measured by the

remote device in response to the processing instruction differ from stored

measurement values of the characteristics of the set of PUF devices

QB\133502.00130\66678112.1

ATTORNEY DOCKET NO. 2019-026 (133502.00130)

41

determined using the processing instruction in device data stored in a

memory; and

applying an error-correction algorithm to stored measurement values of the

characteristics of the set of PUF devices determined using the processing

instruction in the device data stored in the memory to produce the expected

measurement values used to generate the one or more encryption keys.

18. The method of claim 13, wherein the one-way cryptographic function includes at least

one of a SHA-1, SHA-2, SHA-3, SHA-224, SHA-256, SHA-384, SHA-512, MD5, MD6,

and SWIFT function.

QB\133502.00130\66678112.1

ATTORNEY DOCKET NO. 2019-026 (133502.00130)

42

ABSTRACT

A system is configured to derive a set of encryption keys from measured device

characteristics of at least one PUF device and communicate with a remote device by performing

a cryptographic operation secured by the set of encryption keys. The cryptographic operation

includes segmenting a first data stream into a first plurality of data stream fragments, segmenting

a first data stream fragment of the first plurality of data stream fragments into a first numeric

value and a second numeric value, identifying, using the first numeric value, a first encryption

key of the set of encryption keys, and applying a one-way cryptographic function to the first

encryption key a first number of times determined by the second numeric value to generate a

transformed fragment having a value that depends on the values of the first numeric value and

the second numeric value from the first data stream fragment and a value of the first encryption

key.

1
/1

0

A
ttorne

y D
ocke

t N
o

:
2

0
1

9
-02

6 (13
35

0
2

.00
13

0)
Inve

n
to

r(s):
C

a
m

b
o

u
T

itle
:

P
H

S
Y

IC
A

L
 U

N
C

LO
N

A
B

L
E

 F
U

N
C

T
IO

N
-B

A
S

E
D

 E
N

C
R

Y
P

T
IO

N
 S

C
H

E
M

E
S

 W
IT

H
C

O
M

B
IN

A
T

IO
N

 O
F

 H
A

S
H

IN
G

 M
E

T
H

O
D

S

FIG. 1

…

…Client a

Client j

Client n

Server
Client a

Client j

Client n

Database of
Initial

Responses

Constellation of
PUFs

Initial
Responses

102

105a

105j

105n

160a

160j

160n

130a

130j

130n

Database 104

130

2
/1

0

A
ttorne

y D
ocke

t N
o

:
2

0
1

9
-02

6 (13
35

0
2

.00
13

0)
Inve

n
to

r(s):
C

a
m

b
o

u
T

itle
:

P
H

S
Y

IC
A

L
 U

N
C

LO
N

A
B

L
E

 F
U

N
C

T
IO

N
-B

A
S

E
D

 E
N

C
R

Y
P

T
IO

N
 S

C
H

E
M

E
S

 W
IT

H
C

O
M

B
IN

A
T

IO
N

 O
F

 H
A

S
H

IN
G

 M
E

T
H

O
D

S

FIG. 2

240 240

Image 261 PUF Array 260

221 221

210

Challenge 222 222

PW
223b

PW
223a

Digest 225 Digest 225

230

230

Key Generator 235

230

Key Generator 235

3
/1

0

A
ttorne

y D
ocke

t N
o

:
2

0
1

9
-02

6 (13
35

0
2

.00
13

0)
Inve

n
to

r(s):
C

a
m

b
o

u
T

itle
:

P
H

S
Y

IC
A

L
 U

N
C

LO
N

A
B

L
E

 F
U

N
C

T
IO

N
-B

A
S

E
D

 E
N

C
R

Y
P

T
IO

N
 S

C
H

E
M

E
S

 W
IT

H
C

O
M

B
IN

A
T

IO
N

 O
F

 H
A

S
H

IN
G

 M
E

T
H

O
D

S

FIG. 3

0

1

31

...

| 𝟎
𝟏

𝟎,
𝟐𝟓𝟔| 𝟏

𝟏
𝟏
𝟐𝟓𝟔 … | 𝟑𝟏

𝟏
𝟑𝟏
𝟐𝟓𝟔

325

326

4
/1

0

A
ttorne

y D
ocke

t N
o

:
2

0
1

9
-02

6 (13
35

0
2

.00
13

0)
Inve

n
to

r(s):
C

a
m

b
o

u
T

itle
:

P
H

S
Y

IC
A

L
 U

N
C

LO
N

A
B

L
E

 F
U

N
C

T
IO

N
-B

A
S

E
D

 E
N

C
R

Y
P

T
IO

N
 S

C
H

E
M

E
S

 W
IT

H
C

O
M

B
IN

A
T

IO
N

 O
F

 H
A

S
H

IN
G

 M
E

T
H

O
D

S

Challenge
422

Password
423a

Digest(s) 425

H
421a

430
H

421b

Keys
440

Challenge
422

Password
423b

Digest(s) 425

H
421a

430H
421b

Keys
440

HBC

HANDSHAKE

Server
402

Client
405

FIG. 4

461 460

5
/1

0

A
ttorne

y D
ocke

t N
o

:
2

0
1

9
-02

6 (13
35

0
2

.00
13

0)
Inve

n
to

r(s):
C

a
m

b
o

u
T

itle
:

P
H

S
Y

IC
A

L
 U

N
C

LO
N

A
B

L
E

 F
U

N
C

T
IO

N
-B

A
S

E
D

 E
N

C
R

Y
P

T
IO

N
 S

C
H

E
M

E
S

 W
IT

H
C

O
M

B
IN

A
T

IO
N

 O
F

 H
A

S
H

IN
G

 M
E

T
H

O
D

S

FIG. 5

Responses 530
Ciphertext
Fragments

545

Values 535
{K0 ... Ki ... KN-1 }

Message 599

N

N N

Responses
530

N

Ciphertext
Fragments

545

N

 EQUAL?

Vary K

Values 535
{K0 ... Ki ... KN-1 }

Message 599

ENCRYPTION

DECRYPTION

NO

YES

(256-Ki)Hash

(K)
Hash

(256)
Hash

N

521

521

521

Keys
540

6
/1

0

A
ttorne

y D
ocke

t N
o

:
2

0
1

9
-02

6 (13
35

0
2

.00
13

0)
Inve

n
to

r(s):
C

a
m

b
o

u
T

itle
:

P
H

S
Y

IC
A

L
 U

N
C

LO
N

A
B

L
E

 F
U

N
C

T
IO

N
-B

A
S

E
D

 E
N

C
R

Y
P

T
IO

N
 S

C
H

E
M

E
S

 W
IT

H
C

O
M

B
IN

A
T

IO
N

 O
F

 H
A

S
H

IN
G

 M
E

T
H

O
D

S

FIG. 6

Responses 630 Ciphertext
Fragments

645

Values 635
{K0 ... Ki ... KN-1 }

Message Digest
695

N

N N

Signature
650

N

 EQUAL?

SIGNING

VERIFICATION

 Ki

YES

(256-Ki)Hash

(K)
Hash

Values 636
{K0 ... Ki ... KN-1 }

Message Digest 696

Signature
650

N

Keys
640

N

VERIFIED

621

621
Message Digest

695

N

Hash

621

Responses
630

N

Hash

621

(Ki)

(256)

 Ki

7
/1

0

A
ttorne

y D
ocke

t N
o

:
2

0
1

9
-02

6 (13
35

0
2

.00
13

0)
Inve

n
to

r(s):
C

a
m

b
o

u
T

itle
:

P
H

S
Y

IC
A

L
 U

N
C

LO
N

A
B

L
E

 F
U

N
C

T
IO

N
-B

A
S

E
D

 E
N

C
R

Y
P

T
IO

N
 S

C
H

E
M

E
S

 W
IT

H
C

O
M

B
IN

A
T

IO
N

 O
F

 H
A

S
H

IN
G

 M
E

T
H

O
D

S

FIG. 7

Challenge
722

Password
723a

Digest(s) 725

H
721a

731

H
721b

Keys
740

Challenge
722

Password
723b

Digest(s) 725

H
721a

730H
721b

Keys
740

HBC

HANDSHAKE

Server
602

Client
605

761 760

MATCHING
ENGINE

750

Instructions
724

8
/1

0

A
ttorne

y D
ocke

t N
o

:
2

0
1

9
-02

6 (13
35

0
2

.00
13

0)
Inve

n
to

r(s):
C

a
m

b
o

u
T

itle
:

P
H

S
Y

IC
A

L
 U

N
C

LO
N

A
B

L
E

 F
U

N
C

T
IO

N
-B

A
S

E
D

 E
N

C
R

Y
P

T
IO

N
 S

C
H

E
M

E
S

 W
IT

H
C

O
M

B
IN

A
T

IO
N

 O
F

 H
A

S
H

IN
G

 M
E

T
H

O
D

S

802

830 Initial
Responses

Msgs
842

Responses
830(1)

Keys
840(1)

Ciphertexts
844(1)

Responses
830(2)

Keys
840(2)

Ciphertexts
844(2)

Initial Response
830(0)

Key
840(0)

Ciphertext
844(0)

Key
840a

Key
840

Msg
842

Response 830

505

Ciphertext 844

Responses
830(3)

Keys
840(3)

ciphertexts
844(3)

Challenge
822

FIG. 8

860

Database
804

9
/1

0

A
ttorne

y D
ocke

t N
o

:
2

0
1

9
-02

6 (13
35

0
2

.00
13

0)
Inve

n
to

r(s):
C

a
m

b
o

u
T

itle
:

P
H

S
Y

IC
A

L
 U

N
C

LO
N

A
B

L
E

 F
U

N
C

T
IO

N
-B

A
S

E
D

 E
N

C
R

Y
P

T
IO

N
 S

C
H

E
M

E
S

 W
IT

H
C

O
M

B
IN

A
T

IO
N

 O
F

 H
A

S
H

IN
G

 M
E

T
H

O
D

S

FIG. 9B

FIG. 9A

1
0/1

0

A
ttorne

y D
ocke

t N
o

:
2

0
1

9
-02

6 (13
35

0
2

.00
13

0)
Inve

n
to

r(s):
C

a
m

b
o

u
T

itle
:

P
H

S
Y

IC
A

L
 U

N
C

LO
N

A
B

L
E

 F
U

N
C

T
IO

N
-B

A
S

E
D

 E
N

C
R

Y
P

T
IO

N
 S

C
H

E
M

E
S

 W
IT

H
C

O
M

B
IN

A
T

IO
N

 O
F

 H
A

S
H

IN
G

 M
E

T
H

O
D

S

Responses
1030

FIG. 10

Response(L,P)
1031

(“private key”)
Ciphertext
Fragment

1045

Values 1035
{K0 ... Ki ... KN-1 }

Responses
1030

Ciphertext
Fragments

1045

N

MATCH

Vary K, L, P

ENCRYPTION

DECRYPTION

NO

YES

(256-Ki)Hash

(K)
Hash

(256)
Hash

1021

1021

1021

Keys
1040

Values 1037
{L0 ... Li ... LN-1 }

Values 1039
{P0 ... Pi ... PN-1 }

Ki

N

N

N

N

Li

Pi

Xi
Ci

Values 1037
{L0 ... Li ... LN-1 }

Values 1039
{P0 ... Pi ... PN-1 }

Values 1035
{K0 ... Ki ... KN-1 }

Message Blocks
1099

{M0 ... Mi ... MN-1 }

Message
Blocks
1099

{M0 ... Mi ...
MN-1 }

{C0 ... Ci ... CN-1 }

