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Featured Application: Using physical unclonable functions (PUFs), in support of networks se-
cured with a public key infrastructure, to generate, on demand, the key pairs needed for lattice 
and code PQC algorithms. 

Abstract: Lattice and code cryptography can replace existing schemes such as elliptic curve cryp-
tography because of their resistance to quantum computers. In support of public key infrastructures, 
the distribution, validation and storage of the cryptographic keys is then more complex for handling 
longer keys. This paper describes practical ways to generate keys from physical unclonable func-
tions, for both lattice and code-based cryptography. Handshakes between client devices containing 
the physical unclonable functions (PUFs) and a server are used to select sets of addressable positions 
in the PUFs, from which streams of bits called seeds are generated on demand. The public and 
private cryptographic key pairs are computed from these seeds together with additional streams of 
random numbers. The method allows the server to independently validate the public key generated 
by the PUF, and act as a certificate authority in the network. Technologies such as high performance 
computing, and graphic processing units can further enhance security by preventing attackers from 
making this independent validation when only equipped with less powerful computers. 

Keywords: Lattice cryptography; code cryptography; post quantum cryptography; physical un-
clonable function; public key infrastructure; high performance computing 
 

1. Introduction 
In most public key infrastructure (PKI) schemes for applications such as crypto-

graphic currencies, financial transactions, secure mail and wireless communications, the 
public keys are generated by private keys with Rivest–Shamir–Adleman (RSA) and ellip-
tic curve cryptography (ECC). These private keys are natural numbers, typically 3000-bit 
long for RSA and 256-bits long for ECC. For example, in the case of ECC, the primitive 
element of the elliptic curve cyclic group is multiplied by the private key to find the public 
key. It is now anticipated that quantum computers (QC) will be able to break both RSA 
and ECC when the technology to manufacture enough quantum nodes becomes available. 
The paper entitled “A Riddle Wrapped in an Enigma” by N. Koblitz and A. J. Menezes 
suggested that the ban of RSA and ECC by the National Security Agency is unavoidable, 
and that the risk of QC is only one element of the problem [1]. Plans to develop post quan-
tum cryptographic (PQC) schemes have been proposed to secure blockchains by Kiktenko 
et al. [2], and for cryptocurrency security by Semmouni et al. [3], even if the timeline for 
the availability of powerful QC is highly speculative. Recently, Campbell et al. [4], and 
Kampanakisy et al. [5], proposed distributed ledger cryptography and digital signatures 
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with PQC. In 2015, the National Institute of Standards and Technology (NIST) initiated a 
large-scale program to standardize PQC algorithms. One possible implementation of PQC 
algorithms for a PKI is the one in which each client device, or designate, generates the key 
pairs, and sends the public keys to a certificate authority (CA). This assumes a separate 
authentication process, and that each client device can securely store the key pairs. 

The research question that is the subject of this paper is the feasibility of using phys-
ical unclonable functions (PUFs), together with a handshake process with the CA that 
generate new key pairs from the PUF at each transaction, thereby eliminating the need to 
store the key pair. Attempts to retrieve the secret keys are not relevant anymore as they 
are only used once. Such a configuration is raising several structural and technical ques-
tions. A secure enrollment process of each PUF needs to be established, and the CA has to 
store the challenges and reference values of each PUF. Such an infrastructure is already 
known when the security is based on secure hardware elements and tokens and requires 
special protections against opponents. From a technical standpoint, it is questionable that 
the long key pairs necessary for PQC algorithms can be generated from physical elements. 
While a single bit mismatch is not acceptable for PQC algorithms, the natural drifts of 
PUFs over environmental conditions and aging are real concerns that need to be ad-
dressed. This paper is structured in the following way: 

[Section 2]: The lattice and code-based cryptographic algorithms under consideration for 
standardization by NIST are presented. These algorithms are well documented, and the 
software stack written in C can be downloaded for IoT implementation. The schemes are 
based on the generation of random numbers, and the computation of public–private key 
pairs. The digital signature algorithms (DSA), and key encapsulation mechanisms (KEM) 
are not more complex to implement with PQC than with the existing asymmetrical cryp-
tographic schemes. 
[Section 3]: We present some of the challenges associated with the use of PUF technology 
to secure PKI architectures. The proposed methods are based on existing cryptographic 
schemes, and commercially available PUFs. We present how the response based crypto-
graphic (RBC) scheme can overcome the bit error rates (BER) that occur when keys are 
generated from physical elements. Finally, we present some hardware considerations in 
the implementation of PQC for PKI. 
[Section 4]: In this section, we propose schemes that use PUFs to generate the public–
private key pairs for lattice and code-based cryptography. We show how the combination 
of random number generators, combined with the streams generated by the PUF can gen-
erate key pairs with relatively low error rates. We show how the error in these streams 
can be corrected using a search engine. 
[Section 5]: Finally, in the implementation and experimental section, we compare crypto-
graphic schemes and algorithms. We analyze the experimental results comparing the ef-
ficiency of RBC operating with various PQC schemes, ECC, and advanced encryption 
standard (AES). As expected, asymmetrical schemes are slower than AES; however, the 
performance of the selected PQC algorithms is encouraging for the implementation of 
PUF-based architecture, using the RBC to handle the expected BER.  

2. Lattice and Code-Based Post Quantum Cryptography 
In 2019, the number of candidates of the NIST standardization effort was narrowed 

to 26, as part of phase two of the program [6]. In July 2020, NIST announced the selection 
of seven likely finalists for phase three of the program [7]: CRYSTALS-Kyber, CRYSTALS-
Dilithium, SABER, NTRU, and FALCON with lattice cryptography [8–12]; RAINBOW 
with multivariate cryptography [13], and Classic McEliece with code-based cryptography 
[14,15]. The software developed is mainly targeting DSA applications, as well as KEM. 
Lattice cryptography is relatively mature, well documented, and is most likely to become 
mainstream for cybersecurity. Lattice-based algorithms exploit hardness to resolve prob-
lems such as the closest vector problem (CVP), learning with error (LWE), and learning 
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with rounding (LWR) algorithms, and share similarities with the knapsack cryptographic 
problem. 

2.1. Learning with Error Cryptography 
The LWE of the CVP problem was first introduced by Regev [16]. The knowledge of 

integer-based vector t, and matrix A with t = A.s1 cannot hide the vector s1; however, the 
addition of a “small” vector of error s2 with t = A.s1+s2, makes it hard to distinguish the 
vectors s1 and s2 from t. The vector s2 needs to be small enough for the encryption/decryp-
tion cycles, but large enough to prevent a third party from uncovering the private key (s1; 
s2) from the public information (t; A). The public–private cryptographic key pair genera-
tion for client device i can be based on polynomial computations in a lattice ring, and is 
described in Figure 1: 
1. The generation of a first data stream called seed a(i) that is used for the key generation; 

in the case of LWE, the seed a(i) is shared openly in the network. 
2. The generation of a second data stream called seed b(i) that is used to compute a sec-

ond data stream for the private key Sk(i); the seed b(i) is kept secret. 
3. The public key Pk(i) is computed from both data streams and is openly shared. 
4. The matrix A(i) is generated from seed a(i). 
5. The two vectors s1(i) and s2(i) are generated from seed b(i). 
6. The vector t(i) is computed: t(i) ← A(i) s1(i) + s2(i). 
7. Both seed a(i) and t(i) become the public key Pk(i). 
8. Both s1(i) and s2(i) become the private key Sk(i).  

 
Figure 1. Example of public–private key generation for LWE based cryptography. The matrix A(i) and vectors S1(i) and S2(i) 
are generated from random number generators. The vector t(i) is computed from these elements for the generation of the 
key pair. 

A digital signature algorithm (DSA) can be realized from the LWE instance by first 
generating a public–private key pair as in Figure 1. The secret key is then used to sign a 
message, and the public key is used to verify this signed message. In CRYSTALS-Dilith-
ium [8], the authors use a Fiat-Shamir with Aborts approach [17] for their signing and 
verification procedure. The outline of the signing procedure is as follows: 
1. Generate a masking vector of polynomials y. 
2. Compute vector A.y and set w1 to be the high-order bits of the coefficients in this 

vector. 
3. Create the challenge c, as the hash of the message and w1.  
4. Compute intermediate signature z = y + c.s1. 
5. Set parameter β to be the maximum coefficient of c.s1.  
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6. If any coefficient of z is larger than γ1 - β, then reject and restart at step 1. 
7. If any coefficient of the low-order bits of A.z – c.t is greater than γ2 − β, then reject 

and restart at step 1. 
Note: γ1, γ2, and β are set such that the expected number of repetitions is between 4 and 
7. 

The general outline of the verification procedure is given by the following: 
Compute w1’ to be the high-order bits of A.z–c.t and accept if all coefficients of z are 

less than γ1–β and if c is the hash of the message and w1’.  
Encapsulation allows for two parties to securely share a symmetric key by encapsu-

lating the key in ciphertext. When both parties have the symmetric key, they are then able 
to use a symmetric-key encryption algorithm to communicate (e.g., AES). These algo-
rithms are known as key encapsulation mechanisms (KEM) and a few examples from 
NIST are SABER [18], Classic McEliece [14,15], CRYSTALS-Kyber [19], and NTRU [20]. 
The process of using encapsulation with LWE/LWR is described below: 
• The public and private keys of both parties are constructed as described in Figure 1.  
• Person A sends Person B their public key. 
• Person B randomly generates a symmetric key and encapsulates it in a ciphertext 

with the public key of person A.  
• Person B sends the ciphertext to person A. 
• Person A decapsulates the ciphertext with their private key. 
• Both parties now have the symmetric key in their possession. 

In summary, LWE schemes are now relatively mature, and very well documented. 
The methods selected by the NIST standardization program, presented here, are straight-
forward to use. The codes are widely available online for download, and we successfully 
deployed them in our research environment to study the use of PUFs for key generation. 

2.2. Learning with Rounding Cryptography 
The learning with rounding problem was first introduced by Banerjee [21]. It is the 

derandomized version of learning with error, which deterministically generates the noise 
in the LWE by rounding coefficients. This will eliminate the noise sampling, and signifi-
cantly reduce the bandwidth [22]. The LWR is proved to be as hard as LWE to solve; hence, 
it remains secure to be used in cryptographic applications. In schemes such as “Saber”, a 
constant h is added as a constant vector to simulate the rounding operation by bit shifting, 
therefore playing a similar protecting role than the error vectors of LWE [18]. Saber, which 
is one of the NIST’s finalists in the key encapsulation category, uses LWR for key genera-
tion in public key encryption and key encapsulation. Below all three steps of PKE and 
KEM are described:  

Saber PKE Key Generation 
1. Similar to LWE, seed a(i) is used to generate matrix A(i). 
2. Seed b(i) is used to generate vector s(i). 
3. The vector t(i) is computed: t(i) ← A(i) . s(i) + h(i). 
4. Both seed a(i) and t(i) become the public key Pk(i). 
5. s(i) becomes the private key Sk(i).  

Saber PKE Encryption 
1. The seed a(i) and t(i) is extracted from public key to encrypt the message m. 
2. Matrix A(i) and vector s’(i) are generated. 
3. The vector t’(i) is computed by rounding the product of A(i) . s’(i): t’(i) ← A’(i) . s’(i) + h(i). 
4. Polynomial v’(i) is calculated as: v’(i) = t(i) . s’(i). 
5. v’(i) is used to encrypt the message m which denoted as cm. 
6. Ciphertext consists of cm and t’(i). 
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Saber PKE Decryption 
1. v(i) is calculated as: v(i) = t’(i) . s(i). 
2. The message m’ is decrypted by reversing computations with v(i) and cm. 

The Saber key encapsulation mechanism has three steps: Saber KEM Key Generation, 
Saber KEM Encapsulation, and Saber KEM Decapsulation: 

Saber KEM Key Generation 
1. Saber PKE key generation is used to return seed a(i), t(i) and s(i).  
2. Both seed a(i) and t(i) become the Saber KEM public key Pk(i). 
3. The hashed public key Pkh(i) is generated using SHA3-256. 
4. Parameter z is randomly sampled. 
5. z, Pkh(i) and s(i) become the Saber KEM secret key. 

Saber KEM Encapsulation 
1. Message m and public key Pk(i) are hashed using SHA3-256. 
2. Saber PKE encryption is used to generate ciphertext. 
3. Hash of the Pk(i) and ciphertext are concatenated, then hashed to encapsulate the key. 

Saber KEM Decapsulation 
1. Message m’ is decrypted by using Saber PKE Decryption. 
2. The decrypted message m’ and hashed public key Pkh(i) are hashed to generate K’. 
3. Ciphertext c’m is generated from saber PKE Encryption for message m’. 
4. If cm = c’m then the K = Hash(K’,c), if not, K = Hash(z,c). 

The level of documentation available on LWR is not quite as complete as what is 
available for LWE. However, the proposed implementation of LWR for NIST’s PQC pro-
gram is solid. The use of PUFs to secure PKIs based on LWR is not more challenging than 
the one based on LWE. 

2.3. NTRU Cryptography 
Cryptographic algorithms such as FALCON, which uses NTRU (𝑵𝒕𝒉 degree of 

TRUncated polynomial ring) arithmetic, are also based on lattice cryptography. The pa-
rameters of the scheme include a large prime number N, a large number q and a small 
number p that are both used for modulo arithmetic. Two numbers df and dg are used to 
truncate the polynomials f(i) and g(i). The key generation cycle for client device (i), as shown 
in Figure 2, is the following: 
1. Generation of the two truncated polynomials f(i) and g(i) from seed a(i) and seed b(i). 
2. Computation of Fq(i), which is the inverse of polynomial f(i) modulo q. 
3. Computation of Fp(i), which is the inverse of polynomial f(i) modulo p. 
4. Computation of polynomial h(i): h(i) ← p . Fq(i) . g(i). 
5. The private key Sk(i) is {f(i); Fp(i)}. 
6. The public key Pk(i) is h(i). 



Appl. Sci. 2021, 11, 2801 6 of 21 
 

 
Figure 2. Example of key generation for NTRU cryptography. The polynomials f(i) and g(i) and are generated from random 
number generators, from which the inverses Fq(i) and Fp(i) are computed. The public key h(i) is also computed from these 
polynomials. 

As the polynomials f(i) and g(i) are not always usable, they are subject to some pre-
conditions such as invertible modulo p and q. The client device needs to try several pos-
sible random numbers, and select the ones giving acceptable private keys. Once sufficient 
public and private keys are available, the encryption of the plaintext message m, m ∈ {−1, 0, 1}N is done by finding the random polynomial r, r ∈ {−1, 0, 1}N, which uses a corre-
sponding parameter dr, and calculating the ciphertext with the equation e ≡ r.h + m (mod 
q). To retrieve m from e, we first calculate a ≡ f.e (mod q) and lift the coefficients of a to be 
between ± 𝑞/2. Then, a (mod p) is equal to m. [23].  

NTRU lattices can also be applied to DSA. This was originally introduced in NTRU-
Sign, but NIST submissions such as Falcon expand on these algorithms [9]. Falcon utilizes 
the GPV framework applied to NTRU lattices; that is, the public key is a long basis for an 
NTRU lattice while the private key is a short basis. From here, the message m is sent a 
non-lattice point , utilizing a random value salt and hash function H. Using the short 
basis, a user signs by finding the closest vector v to c. The signature is (salt, s = c – v), 
verified by checking if s is short and H (msg ǁ salt) − s is a point on the lattice (verified 
using the long basis [24]). 

The cryptography based on NTRU is well known, and extremely well documented. 
The polynomial arithmetic truncating the N-th element is elegant and effective. Like other 
lattice algorithms under consideration by NIST, we are considering the NTRU as a strong 
candidate, both for DSA, and KEM.  

2.4. Code-Based Cryptography 
Code-based algorithms such as Classic McEliece are implemented with binary Goppa 

codes, that is, Goppa codes with underlying computations in finite Galois fields GF(2m). 
The parameters are an irreducible polynomial of degree t, field exponent m, and code 
length n. The resulting code has error-correction capability of t errors, the information-
containing part of the code word has a size of k = n − m × t and has generator matrix G 
with a size of k × n [14,15]. 

The block diagram of Figure 3 is showing an example of public–private key genera-
tion for code-based cryptography, and client device i.  
1. Seed a(i) is used to create a random invertible binary k × k scrambling matrix S(i).  
2. Seed b(i) is used to create a random n × n permutation matrix P(i). 
3. The public key Pk(i) = Ĝ(i) is computed with the generator matrix G: Ĝ(i) ← S(i) . G . P(i) 
4. The private key Sk(i) is {G; S(i)−1, P(i)−1}. 
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Figure 3. Example of key generation for code-based cryptography. The two matrixes S(i) and P(i) are generated from ran-
dom number generators. The key pairs are computed from the matrixes, and the generator matrix G. 

Given a generator matrix of a binary Goppa code G, an irreducible polynomial of 
degree t, the field exponent m, and the code length n, the encryption process involves the 
following steps: 
1. Create the public key, Ĝ(i) as described above. 
2. Multiply the message m by Ĝ(i), creating the ciphertext message 𝒎. 
3. Add a random error vector e of Hamming weight t to 𝒎 to obtain the ciphertext c. 

Given a ciphertext c, a decoding algorithm, and the private key {G; S(i)−1, P(i)−1}, de-
cryption involves the following steps: 
1. Compute ĉ = c P(i)−1. 
2. Use the decoding algorithm to correct the errors to obtain 𝒎. 
3. Obtain the original message by computing m = 𝒎.S(i)−1 . 

One example of a decoding algorithm is Patterson’s algorithm. This algorithm calcu-
lates the error-locator polynomial which has roots corresponding with the locations of the 
error bits added to the encrypted message. This algorithm can be implemented as follows 
[25]: 
Input: Syndrome polynomial s, Goppa polynomial g of degree t 
Patterson (s, g): 
1. t = s−1 mod g. 
2. 𝑡 √𝑡 + 𝑥. 
3. Find polynomials a, b such that b.t ≡ mod g with deg(a) ≤ |t/2| and deg(b) ≤ |(t-1)/2| 

using the extended Euclidean algorithm. 
4. Calculate and return the error locator polynomial, e = a2 + x.b2. 

Once the error locator polynomial is found, the Berlekamp Trace Algorithm can be 
used to find the roots of the polynomial via factorization. These correspond to the loca-
tions of the error bits added to the message. The Berlekamp Trace Algorithm can be im-
plemented as follows [26]: 
Input: Polynomial to factor p, trace polynomial t, basis index i 
Berlekamp Trace (p, t, i): 

1. if deg(p)  
2. return the root of p. 
3. p0 = gcd(p, t(Bi . x)). 
4. p1 = gcd(p, 1+t(Bi . x)). 

return berlekampTrace(𝑝 , i+1), berlekampTrace(𝑝 , i+1). 



Appl. Sci. 2021, 11, 2801 8 of 21 
 

Code-based is probably the most mature, and well documented PQC algorithm currently 
under consideration. The new implementations are highly effective for KEM; the ex-
tended output functions allow the quick generation of the two matrixes needed for key 
generation. 

3. Public Key Infrastructure 

3.1. Public-private key pairs 
As part of a PKI, the public–private key pairs can be used to securely transmit shared 
secret keys though KEM and to digitally sign messages with DSA (see Figure 4). The pub-
lic key Pk(2) of Client 2 encapsulates the shared secret key of Client 1, that can only be 
viewed by the client (2), thanks to their private key Sk(2) that reverses the encapsulation. 
Client 1 uses their private key Sk(1) to digitally sign a message that is verified with the 
public key Pk(1), providing non-alteration and non-repudiation in the transaction. The 
trust and integrity of such an architecture relies on the following: 

i. The secure generation and distribution of the public–private key pairs to the client 
devices that are participating in the PKI. 

ii. The identification of the client devices, and trust in their public keys. 
iii. The sharing of the public keys among participants. 

Most PKIs rely on certificate authorities (CA) and registration authorities (RA) to offer 
such an environment of trust and integrity. The architecture is vulnerable to several 
threats, including loss of identity, man-in-the-middle attacks, and side channel attacks in 
which the private keys are exposed during KEM, and DSA. 

 
Figure 4. Communication protocol between two client devices with shared public keys. Each client device is set with its 
key pair. For KEM, Client 1 uses the public key of Client 2 to encrypt a shared key; Client 2 retrieves the key with their 
private key. For DSA, Client 1 signs a message with their private key, Client 2 verifies the message with the public key of 
Client 1. 

3.2. PKI with Network of PUFs 
The use of networks of PUFs can mitigate the vulnerabilities of PKIs. PUF technology 

exploits the variations created during fabrication to differentiate each device from all 
other devices, acting as a hardware “fingerprint” [27–29]. Solutions based on PUFs em-
bedded in the hardware of each node can mitigate the risk of an opponent reading the 
keys stored in non-volatile memories. The keys for the PKI can be generated on demand 
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with a one-time use; stealing a key becomes useless as new keys are needed at each trans-
action. During enrollment cycles, the images of the PUFs are stored in look-up tables in 
the CA (see Figure 5); enrollment has to be done only once in a secure environment. Hand-
shake protocols [30] can select a portion of the PUFs—and their image is stored in the 
CA—to extract a data stream that generates the key pairs. The PUFs can be erratic, there-
fore the generation of cryptographic keys, the focus of this work, is challenging. A single-
bit mismatch in a cryptographic key is not acceptable for most encryption protocols. 
Therefore, the use of error correcting code (also use the acronym ECC, not to be confused 
with “elliptic curve cryptography) methods, helper data, and fuzzy extractors can mini-
mize the levels of errors [31–33]. The alternate method is one where the CA has search 
engines, such as response-based-cryptography (RBC), that can handle the validation of 
erratic keys [34–37]. 

The RBC engine that validates public keys, shown in Figure 5, generates public/pri-
vate key pairs until the public key matches the client’s provided key. The server searches 
over a seed (e.g., a 256 bit seed), and uses that seed for key generation. If the generated 
public key matches the client’s public key, then the client is authenticated. If the public 
keys do not match, then the server flips one bit of the seed at a time (increasing the Ham-
ming distance) until the public keys match. Thus, the search is carried out by generating 
the public/private key pairs by iterating over the seed and increasing the Hamming dis-
tance until the seed is found that matches the client’s public key. The search space for a 
256 bit key is 2256 and it would be nearly impossible to authenticate a user in a fixed time 
without the use of parallel computing. High-performance computing HPC and graphics 
processing unit (GPU) technologies are valuable to enhance the ability of the CA to vali-
date the public key generated by the client devices. For instance, graphics processing units 
(GPUs) can be employed to parallelize and accelerate the authentication process. By using 
a GPU, the server can search over multiple keys in parallel. 

 
Figure 5. Physical unclonable function (PUF)-based public key infrastructure (PKI). The Certificate Authority (CA) verify 
the validity of the public keys and transfer them to the Register Authority (RA). The key pairs are generated from the 
PUFs embedded in each client device. The architecture enables cloud-based peer-to-peer secure transactions protected by 
asymmetrical cryptography. 

3.3. Implementation of PQC Algorithms for PKI 
The CRYSTALS-Dilithium digital signature algorithm consists of the following pro-

cedures: key generation, signing, and verification. These procedures are computationally 
bound by two operations: multiplication in the polynomial ring noted ℤq[X]/(Xn+1), and 
matrix/vector expansion via an extendable output function (XOF). Therefore, any attempt 
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to optimize Dilithium should target these operations. We describe below the literature 
that focuses on such optimizations. 

The operation of polynomial multiplication has a quasi-linear time complexity bound 
by the Number Theoretic Transform (NTT) implementation, and the operation of expan-
sion via XOF is bound by the SHAKE-128 implementation. Using the AVX2 instruction 
set, the matrix and vector expansion is optimized by using a vectorized SHAKE-128 im-
plementation that operates on four sponges that can absorb and squeeze blocks in parallel. 
Additionally, Ducas et al. [8] use the AVX2 instruction set to optimize the NTT thus speed-
ing up the polynomial ring multiplication by about a factor of two. This optimization is 
achieved by interleaving the vector multiplications and Montgomery reductions so that 
parts of the multiplication latencies are hidden. 

Nejatollahi et al. [38] outline two different works that optimize the NTT using an 
Nvidia GPU. The first reports higher throughput polynomial multiplication [39] and the 
second is a performance evaluation between several versions of the NTT, including itera-
tive NTT, parallel NTT, and CUDA-based FFT (cuFFT) for different polynomial sizes [40]. 
Strictly algorithmic optimizations of the NTT are presented in other works [41-42]. Longa 
et al. [41] show that limiting the coefficient length in polynomials to 32 bits yields an effi-
cient modular reduction technique. By employing this new technique in NTT, reduction 
is only required after multiplication, and significant performance gains are achieved when 
compared to a baseline implementation. Additionally, the authors use signed integer 
arithmetic which decreases the number of add operations necessary in both sampling and 
polynomial multiplication. Greconici et al. [42] use signed integer arithmetic to decrease 
the number of add operations, which leads to performance gains in several functions in-
cluding NTT and SHAKE-128. The authors also employ a merging layers technique in 
NTT that reduces the number of loads and stores by about a factor of two. 

The SABER KEM algorithm is similarly computationally bound by polynomial mul-
tiplication and hashing functions. As mentioned by D’Anvers et al. [18], since SABER uses 
power-of-2 moduli, this eliminates the need for rejection sampling and makes modular 
reduction fast by using bit shift operations. However, one drawback of using power-of-2 
moduli is the inability to take advantage of faster NTT multiplication since the moduli are 
not prime. As described above, Akleylek et al. [40] examines the performance of different 
multiplication techniques. By implementing a version of cuFFT in a similar fashion for 
SABER, we may observe a speedup in polynomial multiplication. In addition, SABER is 
computationally bound by hashing and extendible functions. SABER uses SHA3_256 and 
SHA3_512 functions for hashing and SHAKE128 as an XOF. Roy et al. [43] demonstrate 
parallelizing SHAKE128 using AVX2 and batching four operations, thus achieving a 38% 
increase in throughput for SABER’s key generation. Additionally, optimizing the hashing 
functions and SHAKE128 in a different way, the SABER technical documentation de-
scribes replacing the SHA3 functions with SHA2 and replacing SHAKE128 with AES in 
counter mode [18]. 

Focusing on three PQC algorithms, SABER, CRYSTALS-Dilithium, and NTRU, a 
breakdown of the fraction of time spent (as a percentage) in the hashing/XOR and poly-
nomial multiplication components of the algorithms is reported in Table 1. NTRU spends 
the majority of its time doing polynomial multiplication first, then hashing second [44], 
but no benchmarks have been calculated thus far. The times spent for the hashing and 
polynomial multiplication components of CRYSTALS-Dilithium, and SABER are reported 
as percentages of the total execution time for the key pair generation procedure where the 
percentages are an average of 10 time trials. 
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Table 1. Breakdown of the fraction of the time hashing and extendable output function XOF com-
pared with the time performing polynomial multiplication. Both SABER and CRYSTALS are con-
strained by the polynomial multiplication. The light versions considered in the post quantum 
cryptographic (PQC) implementations of hashing and XOF functions such as SHA3 with SHAKE 
are extremely effective. 

 Hashing and XOF Polynomial Multiplication Reference 
SABER ~30% ~60% Our benchmarks 

CRYSTALS-Dilithium ~42% ~33% Our benchmarks 
NTRU second bottleneck first bottleneck [40,41] 

4. PUF-Based Key Distribution for PQC 
4.1. PUF-Based Key Distribution for LWE Lattice Cryptography 

The proposed generic protocol to generate public–private key pairs with PUFs for 
LWE lattice cryptography is shown in Figure 6. The random number generator (a) is used 
for the generation of seed a(i), which is public information. However, Seed k that is needed 
for the generation of the private key Sk(i) is generated from the PUF. The outline of a pro-
tocol generating a key pair for LWE cryptography is the following: 
1. The CA uses a random numbers generator and hash function to be able to point at a 

set of addresses in the image of the PUF-i. 
2. From these addresses, a stream of bits called Seed K’ is generated by the CA. 
3. The CA communicates to the Client (i), through a handshake, the instructions needed 

to find the same set of addresses in the PUF. 
4. Client (i) uses the PUF to generate the stream of bits called Seed K. The two data 

streams Seed K and Seed K’ are similar, however slightly differ from each other due 
to natural physical variations and drifts occurring in the PUFs. 

5. [If needed, Client (i) applies error correcting codes to reduce the difference between 
Seed K and Seed K’; the corrected, or partially corrected, data stream is used to gen-
erate the vectors s1(i) and s2(i)] 

6. Client (i) independently uses a random numbers generator (a) to generate a second 
data stream Seed a(i), which is used for the computation of the matrix A(i). 

7. The vector t(i) is computed: t(i) ← A(i) s1(i) + s2(i). 
8. The private key Sk(i) is {s(1(i); s2(i)}. 
9. The public key Pk(i) is {a(i); t(i)}. 
10. Client (i) communicates to the CA, through the network, the public key Pk(i); 
11. The CA uses a search engine to verify that Pk(i) is correct. The search engine initiates 

the validation by generating a public key from Seed a(i) and Seed K’ with lattice cryp-
tography codes. If the resulting public key is not Pk(i), an iteration process gradually 
injects errors into Seed K’ and computes the corresponding public keys. The search 
converges when a match in the resulting public key is found, or when the CA con-
cludes that the public key should be bad. 

12. If the validation is positive, the public key Pk(i) is posted online by the RA. 
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Figure 6. PUF-based key pair generation for learning with error (LWE). The private keys, i.e., vectors S1(i) and S2(i), are 
generated from the seed K that is extracted from the PUF. The matrix A(i) continues to be generated from a random number. 
The search engine of the CA has access to an image of the PUF, and can independently validate the validity of public key, 
which is posted by the RA for cloud-based transactions. A new key pair can be generated, and validated by the CA, at 
each handshake cycle. 

This protocol is applicable for single use key pairs that are generated for each trans-
action. The random number generators of the first step of the protocol can generate new 
data streams, which point at different portions of the PUFs, thereby triggering the gener-
ation of new key pairs. The search engine described above can benefit from noise injection 
and high-performance computing. The injection of noise in Seed K will make the search 
too difficult for CA, unless equipped with HPCs, or GPUs. This can preclude hostile CAs 
from participating. 

4.2. PKI Architecture with PUF-Based Key Distribution and LWE 
The PUF-based key pair generation scheme with LWE cryptography, as presented in 

the previous section, can be integrated in a PKI securing a network of i clients. Figure 7 
shows two client devices communicating directly, either by exchanging secret keys 
through KEM or DSA. The client devices independently generate the seed a(i), while the 
PUFs and their images are used for the independent generation of the vectors s1(i) and s2(i). 
The role of the CA is to check the validity of the vectors t(i) , and to transmit both the seeds 
a(i) the vectors t(i) to the RA, which maintain a ledger with valid public keys. Such an ar-
chitecture is secured assuming the following conditions: 

i. The enrollment process in which the PUFs are characterized to generate their image 
is accurate and not compromised by the opponent. 

ii. The database stored in the CA that contains the image of the PUFs for the i client 
devices is protected from external and internal attacks. 

iii. The PUFs embedded in each client device are reliable, unclonable, and tamper re-
sistant. 

iv. The key generation process, KEM, and DSA are protected from side channel analysis. 
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Figure 7. PUF-based public key infrastructure (PKI) with LWE cryptography. The use of PUFs in the PKI network does 
not impact the user experience during peer-to-peer secure communication. The ability to generate one time use key pairs, 
and authenticate each client device at each transaction, enhances the root of trust. Such PUF based architectures are only 
valid if the latencies are kept below a few seconds. 

As we experimentally verified that the latencies of the key generation process from 
the PUFs are low enough, such a protocol can be used to change the key pairs after each 
encryption cycle. Therefore, the potential loss of the secret keys during an encryption/de-
cryption cycle has minimum impact as different keys will be used during the subsequent 
cycles. 

4.3. PUF-Based Key Distribution for LWR Lattice Cryptography 
There are some similarities between LWE and LWR implementations. The seed k of 

the PUF is only used to generate one vectors s1(i), while a constant vector h(i) can be gener-
ated independently. The public vector t(i) is computed in a similar way: t(i) ← A(i) . s1(i) + h(i). 

4.4. PUF-Based Key Distribution for NTRU Lattice Cryptography 
The protocol to generate key pairs from PUFs for NTRU cryptography is similar than 

the one presented above in Section 4.1 for LWE, see Figure 8. We are suggesting a method 
where the only source of randomness is the PUF, Seed K, to compute both the public key 
Pk(i), and the private key Sk(i). In our implementation, Seed K feeds the hash functions 
SHA-3, and SHAKE, to generate a long stream of bits, then compute the two polynomials 
f(i) and g(i). 

As previously discussed in Section 2.3, the polynomials f(i) and g(i) are not always 
usable due to pre-conditions, therefore a scheme to try several possible ways of address-
ing the PUF has to be developed. One way is to implement a deterministic method that is 
known by both the client device and the CA, which can have a negative impact on the 
latencies. We preferred the solution driven by the client device that asks the CA to initiate 
new handshakes. The summary of the method used to generate the key pairs for NTRU 
cryptography is the following: 
1. The CA uses random numbers to point at a set of addresses in the image of the PUF-

i. 
2. From these addresses, a stream of bits called Seed K’ is generated by the CA. 
3. The CA sends the handshake to the client (i) to find the same addresses. 
4. Client (i) uses the PUF to generate Seed K. 
5. Client (i) applies error correction to Seed K and generates the truncated polynomials 

f(i) and g(i). 
6. Computation of Fp(i) and Fq(i) and verify that the pre-conditions are fulfilled. 
7. If needed, ask for a new handshake and iterate. 
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8. The polynomial h(i) is computed: h(i) ← p · Fq(i) · g(i). 
9. The private key Sk(i) is {f(i); Fp(i)}. 
10. The public key Pk(i) is h(i). 
11. Client (i) communicates to the CA, through the network, the public key h(i). 
12. The CA uses a search engine to verify that h(i) is correct. 
13. If the validation is positive, the public key h(i) is posted online by the RA. 

 
Figure 8. PUF-based key pair generation for NTRU. After each handshake, the polynomials g(i) and f(i) are generated from 
the Seed K that is extracted from the PUF. The public and private key pairs are computed from these two polynomials. 
The search engine of the CA can independently validate the validity of public key with the image of the PUF. 

It is important to notice that steps six and seven of the proposed method, “Compu-
tation of Fp(i) and Fq(i) and verify that the pre-conditions are fulfilled; if needed ask for a 
new handshake and iterate”, could be handled differently to minimize backward and for-
ward communications cycles between the CA and the client device. One example of im-
plementation is to have a pre-arranged way to modify the seed generated by the PUF and 
its image. When the CA fails to validate the public key, several pre-arranged modifications 
of Seed K’ will be tested. 

4.5. PUF-Based Key Distribution for Code-Based Cryptography 
An example of a protocol to generate the key pairs with PUFs for code-based cryp-

tography is shown in Figure 9. The overall protocol is similar to the one presented above 
for lattice cryptography. Much like NTRU, the only source of randomness is Seed K that 
is generated from the PUF to compute the two matrixes S(i) and P(i). The brief outline of 
the protocol for generating key pairs for code-based cryptography is the following: 
1. The CA uses random numbers to point at a set of addresses in the image of the PUF-

i. 
2. From these addresses, a stream of bits called Seed K’ is generated by the CA. 
3. The CA sent the handshake to the client (i) to find the same addresses. 
4. Client (i) uses the PUF to generate Seed K. 
5. Client (i) applies ECC) on Seed K and generates the matrixes S(i) and P(i). 
6. Computation of S(i)−1 and P(i)−1. 
7. The public key Pk(i) = Ĝ(i) is computed with the generator matrix G: Ĝ(i) ← S(i) · G · P(i). 
8. The private key Sk(i) is {G; S(i)−1, P(i)−1}. 
9. Client (i) communicates to the CA, through the network, the public key Ĝ(i). 
10. The CA uses a search engine to verify that Ĝ(i) is correct. 
11. If the validation is positive, the public key Ĝ(i) is posted online by the RA. 
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Figure 9. PUF-based key pair generation for code-based cryptography. The two matrixes S(i) and P(i) are generated from 
the Seed K that is extracted from the PUF. As was done in the previously presented PQC schemes, the search engine of 
the CA has access to an image of the PUF and can independently verify the validity of the public key. 

Step six, the computing of inverses, does not work for all matrixes: request for new 
handshakes, or shared ways to find invertible matrixes and iterate. 

5. Experimental Evaluation 
The purpose of this evaluation is to demonstrate the practicality of the proposed pro-

tocols and understand the potential limitations. The replacement of the random number 
generators by the PUFs follow a similar path for various PQC algorithms; therefore we 
reduced the scope of this evaluation to LWE (qTESLA, CRYSTALS-Dilithium), and LWR 
(LightSABER). The generation of the Seed K from the PUF is done using known methods, 
and the computation of the key pairs is based on the PQC codes made available by NIST, 
which are also considered known. The unknown in the practicality of the protocol is the 
sensitivity to bit error rates (BER) of the search engine of the CA for verifying the public 
keys. The RBC method [34–37] uses the Seed K’ as a starting point to generate an initial 
public key, then iterates by incrementally adding errors, eventually finding the public key 
computed from Seed K by the client device. At high BER, it is desirable to use crypto-
graphic algorithms that have the ability to generate the key pairs at high throughput. 

The RBC itself is an interesting simulation platform for this evaluation, because of 
the possibility to directly measure the throughput in term of the number of key pairs gen-
erated by second. We selected the RBC to experimentally demonstrate that the PQC pro-
tocols are fast enough. We designed an experiment to benchmark three algorithms, 
(qTESLA, CRYSTALS-Dilithium, and LightSABER) with two known cryptosystems (AES 
and ECC). Each of these cryptosystems have a list of parameter sets as a part of their spec-
ifications. We chose parameter sets that were inherently compatible with a 256-bit output 
from a hypothetical PUF as well as these that were best optimized between performance, 
size, and security for IoT devices. For these reasons, the parameter sets AES256, ECC 
Secp256r1, qTESLA-p-I, CRYSTALS-Dilithium 2, and LightSABER were used for the per-
formance comparison. In this analysis, the comparison with ECC is the most relevant one, 
because the PQC codes under consideration and ECC are similar in their objective to gen-
erate public–private keys pairs for PKI. Therefore, ECC and the three PQC algorithms are 
tested here with their software versions. The comparison with AES was included as a 
benchmark of excellence; we used the hardware implementation of AES, natively availa-
ble in Intel processors. One of the objectives of the PQC standardization program driven 
by the NIST is to encourage private industry to eventually design hardware implementa-
tions of the selected codes. 
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We summarize the parameter sets for each algorithm and our motivation for their 
selection in Table 2, as shown below. 

Table 2. Selected cryptosystems, parameter sets, whether the PQC algorithms are NIST round 3 
candidates, specialized instructions employed in the implementations, and our motivation for 
selecting the algorithm and its configuration. 

Algorithm Parameter Set NIST 
Candidate 

Instructions Selection Reason 

AES AES256 N/A AES-NI, SSE
Benchmark: HW implementation 
Lacks DSA and KEM capabilities 

ECC Secp256r1 N/A AVX, SSE 
Benchmark: mainstream for PKI 
Uses 256-bit long keys for DSA 

qTESLA p-I Dropped AVX, SSE 
PQC dropped by NIST: too slow 
DSA uses relatively small keys 

CRYSTALS-Dilithium 2 Phase 3 AVX, SSE 
Active LWE PQC algorithm 

One of preferred DSA scheme 

SABER LightSABER Phase 3 AVX, SSE 
Active LWR PQC algorithm 

One of the preferred KEM scheme

5.1. Experimental Methodology 
As of the time of writing, there are few implementations of RBC engines proposed. 

In this paper, we focus on executing the RBC protocol on a single machine equipped with 
multi-core CPUs. Our implementations are parallelized using OpenMP. To terminate the 
search when a thread finds the correct key, we use a flag in shared memory that is atomi-
cally updated. All implementations utilized the same overall structure and key iteration 
mechanism. We also use AVX instructions in all cryptosystems where applicable; how-
ever, further optimizations can be made by taking advantage of AVX2 or other wide vec-
tor technologies. The AES256 implementation takes advantage of the AES-NI instruction 
set, whereas all other cryptosystems tested do not use any additional vectorized instruc-
tions except AVX and SSE. 

RBC engines targeting purely CPU platforms were only considered for demonstra-
tive purposes. The purpose of this experiment is to compare the relativistic performance 
between all five chosen cryptosystems. The ease of porting one cryptosystem to another 
all on the CPU influenced the scope of experiments. Future experimental evaluations ex-
ploring GPU focus will require more dedicated, specialized programming for each cryp-
tosystem. The CPU used for the experiments was a 2× Xeon Gold 6132 (Skylake) CPU with 
28 total physical cores. Experiments were executed on a dedicated platform. All codes 
were written in C/C++, compiled using O3 optimization flag. 

The experiments were executed by randomly selecting a target thread and using the 
256-bit permutation that is the middle of that given thread’s workload. This guarantees 
that each run accurately reflects the average case where execution stops halfway through 
the 256 choose k search space, for any Hamming distance k. We decided to use this ap-
proach to reduce the need for a high number of iterations to reach a statistical central 
point. Thus, 10 iterations were performed for each cryptosystem, and the median response 
time was selected from the set of 10 time trials. 

The major key performance index (KPI) of the RBC search is key search throughput. 
Therefore, our performance evaluation uses the “effective key throughput” performance 
metric. Since the search increases exponentially with Hamming distance, the fraction of 
time spent initializing/dismantling our procedure will dominate the response time on 
small workloads (small Hamming distances). Consequently, to measure the effective key 
throughput, we use a sufficiently large Hamming distance in each algorithm such that we 
observe peak throughput, indicating that the initialization and dismantling procedures 
(freeing memory, deconstructing objects, etc.) constitute a negligible fraction of the total 
response time. 
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For AES256, the minimum Hamming distance is 4, while for ECC Secp256r1, 
qTESLA-p-I, CRYSTALS-Dilithium 2, and LightSABER the minimum Hamming distance 
is 3. Unfortunately, due to the intractable nature of the problem, the single bit error jump 
from a Hamming distance of 3 to 4 makes it impractical to run a statistically sufficient 
number of runs for ECC and qTESLA-p-I. For this reason, the AES256 benchmarks ran at 
a Hamming distance of 4, and the remaining cryptosystems ran at a distance of 3. 

5.2. Evaluation of the Effective Key Throughput 
In this section, we evaluate the effective (peak) key throughput. Figure 10 plots the 

median of each RBC cryptosystem’s effective key throughput on a logarithmic scale. The 
AES256 implementation, aided by AES-NI, runs several orders of magnitude more effi-
ciently than the public key cryptography variants at 2.17 108 keys per second. ECC 
Secp256r1 performed the second slowest at 4.77 104 keys per second. The post-quantum 
algorithms largely performed better than ECC with 1.97 105 and 6.83 105 keys per second 
for CRYSTALS-Dilithium 2 and LightSABER respectively. qTESLA-p-I was the worst per-
forming PQC and overall cryptosystem out of all five at 2.24 104 keys per second. 

 
Figure 10. Key performance index (KPI) and the effective throughput in keys per second achieved by the response based 
cryptographic (RBC) search engine powered with AMD Ryzen 9 3900X. Benchmark of the post quantum cryptographic 
(PQC) algorithms are compared to the reference codes AES 256 and ECC. 

To get a better sense of the relativistic scaling, we set ECC Secp256r1’s effective key 
throughput results as the reference point since we are interested in how the PQC algo-
rithms perform when replacing it in future PKI cryptosystems. This is plotted in Figure 
11, where now the response variable is displayed in a percentage of the throughout rela-
tive to ECC Secp256r1’s. Shown here, AES256 is roughly 4550 times more performant than 
ECC Secp256r1. CRYSTALS-Dilithium 2 is over 4.14 times more efficient than ECC 
Secp256r1. The most efficient PQC was LightSABER at 14.3 times faster, and the worst 
overall cryptosystem was qTESLA-p-I at 0.469 times slower. 

From these results, we confirm NIST’s position that qTESLA is slower than the algo-
rithms selected in round three. Out of what was tested, this leaves CRYSTALS-Dilithium 
as the strongest candidate for DSA in a PQC environment. For key encapsulation, our 
results show that SABER is a strong candidate for its relatively fast key generation. Future 
testing might consider comparing FALCON against CRYSTALS-Dilithium for DSA, and 
CRYSTALS-Kyber, NTRU, and Classic McEliece against SABER for KEM. 
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Figure 11. Maximum effective throughput relative to the performance of ECC Secp256r1 achieved for each response based 
cryptographic (RBC) cryptosystem implementation powered by AMD Ryzen 9 3900X. Light SABER performance is ap-
proximately 14 times faster than elliptic curve cryptography (ECC). 

6. Conclusion and Future Work 
The PQC algorithms under standardization are encouraging and the latencies are 

reasonable, making the protocols suitable for PKIs securing networks of client devices and 
IoTs. The generation, distribution, and storage of the public–private key pairs for PQC can 
be complex because the keys are usually very long. This paper proposes to generate the 
public–private key pairs by replacing the random number generators with data streams 
generated from addressable PUFs to get the seeds needed in the PQC algorithms. Unlike 
the key pairs computed by PQC algorithms, the seeds are relatively short, typically 256-
bits long. The use of PUFs as a source of randomness is applicable to all five lattice-based 
codes under consideration in the phase III investigation of NIST, and to the code-based 
Classic McEliece scheme. In order to simultaneously generate key pairs from a server act-
ing as the certificate authority, and the client device with access to its PUF, it is critical to 
handle the bit error rates (BERs) that are frequent with physical elements. We verified in 
the experimental section that the RBC can find the erratic seeds by testing an excess of 105 
seeds per second with CRYSTALS-Dilithium 2 and LightSABER, which is faster than what 
we measured with mature algorithms such as the ones with elliptic curves. The experi-
mental evaluation conducted in this work, with the RBC, also lets us conclude that the 
pre-selection by NIST of CRYSTALS-Dilithium for DSA and SABER for KEM are promis-
ing from a performance standpoint. Our results show that the key generation performance 
is at least comparable to that of ECC. The PQC algorithms under consideration are excel-
lent in an environment targeting PUF-based key exchange. The AES hardware-accelerated 
AES-NI implementation yields roughly 220 million keys per second throughput on a sin-
gle machine, which serves a practical real world upper bound for future hardware-accel-
erated PQC implementations. 

In this work we have not yet studied the multivariate-based RAINBOW code, which 
is also an important scheme under consideration for standardization; we are currently 
studying ways to use PUFs for key generation. The task needed to deploy PUF-based PQC 
solutions is not underestimated by the authors of this paper. This will include the use of 
highly reliable PUFs, and the optimization of the cryptographic protocol pointing simul-
taneously at the same set of addresses in the PUF, and in the look up table capturing the 
challenge–response pairs stored in the server. Further optimizing the PUF’s protocols and 
the RBC for PQC algorithms is seen as an opportunity. The use of noises, nonces, errors, 
and rounding vectors can exploit the stochasticity of PUFs, and the ability to handle erratic 
streams of the RBC. The PQC algorithms analyzed in this paper can also benefit from the 
use of distributed memories, high performance computing, and parallel computing, 
which have the potential to further reduce the latencies of the RBC. 
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