
Extended Protocol Using Keyless Encryption Based
On Memristors

Yuxuan Zhu
School of Informatics Computing

and Cyber Systems
Northern Arizona University

Flagstaff, Arizona, United States
yz298@nau.edu

David Hely
Grenoble INP

University Grenoble Alpes
F-26000 Valence, France

David.hely@grenoble-inp.fr

Bertrand Cambou
School of Informatics Computing

and Cyber Systems
Northern Arizona University

Flagstaff, Arizona, United States
Bertrand.cambou@nau.edu

Sareh Assiri
School of Informatics Computing

and Cyber Systems
Northern Arizona University

Flagstaff, Arizona, United States
sa2363@nau.edu

Abstract—The growing interest for keyless encryption calls
for new cryptographic solutions with real keyless schemes. This
paper introduces an extended protocol using keyless encryption,
which is hash-based and generic in cryptography. The sender
side and the receiver side will be contained in the protocol.
The sender will encrypt a plaintext and then send the cipher
to the receiver side, and the cipher used in the protocol will be
based on memristor arrays. We will use values of blocks of the
plaintext to sort the cipher, which will improve the difficulty of
being deciphered. Then, the receiver will receive the cipher and
use it to decrypt the plaintext. The method of implementation is
thoroughly detailed in this paper, and the security of the protocol
is evaluated by testing random plaintexts thousands of times.

Keywords—Security and privacy, Keyless cryptography, Secu-
rity protocol for encryption, Security evaluation

I. INTRODUCTION

For a long time, most of traditional cryptography uses keys
to encrypt the messages. But in recent years, the interest
of encryption without using the keys is growing very fast.
The reason for choosing keyless encryption topic is that
the key generation, key distribution, and key storage in key
cryptography are incredibly complex. Also, there are many
issues with the keys that can help a hacker to extract the key
such as the attack based on differential power analysis. This
kind of attack is practical and non-invasive; the information
will be leaked through hackers analyzing power consumption
to extract secret keys from a wide range of devices [1].
Also, there is another reason that can motivate researchers
to pay attention to the keyless encryption, which is to make
protection for the network of internet of things (IoTs). Because
the IoTs have a limitation of power and memory, the long-
secret keys and some strong cryptographic schemes are hard
to be implemented [2]-[3]. The keyless encryption has been
considered one of the best cryptographic method for protecting
IoTs [4].

A keyless protocol was invented at Northern Arizona Uni-
versity (NAU) cyber security lab and named as “Memristors
to Design Keyless Encrypting Devices.” This protocol is based
on keyless encrypting devices with arrays of memristors,
which convert the message to encrypt into the modulation of
the currents driving the cells at low power. It has used the
multifactor of security such as the random number generator,
password, hash functions and memristor arrays as shown in
Figure 1 [5].

Fig. 1. Keyless encryption schemes with memristor [5]

Figure 1 shows all the protocol steps, which are the fol-
lowing: first, the handshake is generated between the sender
side and the receiver side. Second, each party will XOR the
password (PW) with a random number (RN), and the result of
the XOR will be fed to the hash function to get message digest
(MD). The MD will be divided into three parts: addresses,
orders, and currents. The third step is to do the encryption.
The encryption step has two other steps: (a) the plaintext
will be divided into several blocks; (b) each block will be
combined with resistance value which comes from “images”
of the memristors. Both address and current will point to the
cell (resistance value), which will be picked to combine with
the block that comes from the plaintext, whereas the orders
will help to reorder the cipher.

NAU cybersecurity lab has developed Physical Unclonable



Functions (PUFs) from ReRAM array memristors. The PUF
is generated via the injection of low currents in cells of
memristor arrays, and it will give new variable resistances
each time different low currents are injected. These different
values of resistances have been exploited to design PUFs. In
this paper, the extended keyless protocol based on the protocol
in “Memristors to Design Keyless Encrypting Devices” will
be designed the same as the architectures of Figure 1 except
the orders [5]. Instead of getting the orders from the MD,
they will be provided from the plaintext itself. This extended
protocol is designed to perform encryption and decryption in
a safe method. The paper explains how to design it from the
software perspective.

II. ENVIRONMENTAL SETUP

The protocol contains the sender side and the receiver side.
The sender side will encrypt a message and then send the
cipher and masks to the receiver side. Then, the receiver side
will use the information received to restore the same message.
It is a complicated process that our team has written it in C++
language.

First, we want to use Figure 2 to introduce the basic
environment for building this protocol. As shown in Figure

Fig. 2. Receiver side and sender side in protocol

2, both the sender side and the receiver side share the same
random number (RN) which is a 64-byte long binary stream
that came from our random number generator function [6]-
[7]. The RN is public which means everyone can access it. At
the same time, the sender side also generates a 64-byte long
password (PW) which is also in binary representation, and
it will be sent to the receiver side in a secure environment.
“Secure” means only two sides can access it.

The cybersecurity lab at NAU provided a table of resis-
tances, which contains experimental data generated from 128
ReRAM cells measured with negative bias between 100nA
and 800nA in the 0◦C to 60◦C temperature range [5],[8]. This
data has been saved as a CSV file and sent to our team, and
both sides in the protocol will read the file and use this table
as a two-dimensional array, which contains 128 rows and 8
columns. We will call it the resistance table for simplicity. In
sum, the sender side and the receiver side will have the same
RN, PW, and resistance table (RT). There are a few emerging
themes between RN and PW. They are both 64 bytes long and
in binary form. The only difference between them is that the
RN is public, but the PW is private.

Then, the sender side will combine the RN and the PW
using the Exclusive or (XOR) operation and will get a binary

stream (64 bytes). The protocol chose XOR because other
people cannot get any bit of the original message bytes. For
example, every time the sender side sees a ‘1’ in the encrypted
byte, that ‘1’ could have been generated from a ‘0’ or a ‘1’.
The same thing with a ‘0’, it could come from both ‘0’ or
‘1’. Therefore, not a single bit is leaked from the original
message byte after using XOR logical operation [9]; this will
greatly improve the level of security. After that, the sender side
will use the SHA3-512 (Secure Hash Algorithm 3) function
to generate a short message digest (SMD), which is 64 bytes
(512 bits) long [10]. This procedure is shown in Figure 3.

Fig. 3. How to generate SMD and MD.

After getting the SMD, the sender side will try to extend it
because the length of the message digest decides how many
characters can be encrypted in the protocol. To do it, the first
n bits of SMD will be rotated, each time the output of rotation
is going to feed the SHA3-512 Hash Function to obtain a new
SMD, and finally all SMDs will be combined to get a longer
message digest. In software implementation, the sender side
will rotate the first 16 bits and then obtain 16 different SMDs.
Finally, those 16 SMDs will create the longest message digest
(MD), which will be 512 * 16 = 8192 bits.

III. ENCRYPTION

After obtaining 8192-bits MD, it’s time to do the encryption
in sender side. The first step in encryption architecture is
shown in Figure 4.

Fig. 4. Encryption Part1

At first, the MD will be divided into n blocks; each block
contains “address” and “current;” the address size is 7 bits,
and the current size is 3 bits. The decimal value of 7 bits will



be from 0 to 127, whereas the decimal value of 3 bits will
be from 0 to 7. As a result, the decimal values of address
(Ai) and decimal values of current (Cj) are used to determine
the position (RTij) in the resistance table. As we mentioned
earlier, the resistance table (RT) is a Two-Dimensional array
and it has 128 rows and 8 columns; there are a total of 1024
data. The decimal value of address array (0-127) Ai will
decide on the row in the resistance table, and the decimal
value of current array (0-7) Cj will decide on the column in
the table. These two indices will determine the exact resistance
RTij .

Since it is a protocol for encryption and decryption, it is
natural to have information that needs to be encrypted. The
operation for encrypting information is shown in Figure 5.

Fig. 5. Encryption Part2

As shown, the sender side will be allowed to enter a
plaintext (PT) that needs to be encrypted, and the PT will
be divided into blocks by using the ASCII table [11]. This
is shown on the right side of Figure 5. For example, if a
user enters “hello” as the PT, it will be converted into its
hexadecimal representation at first which are 0x68 (h), 0x65
(e), 0x6c (l), 0x6c (l), 0x6f (o). Then it will be divided into 5x2
= 10 blocks. Each block contains 4 bits. If the hexadecimal
notation 0x68 represents 1 byte (8 bits), then there are two
blocks for this character, and ‘6’ and ‘8’ will be decimal values
for each block. After getting the corresponding blocks, decimal
values of each block obtained from PT will be shown in Figure
6:

Fig. 6. Decimal values of each block extracted from PT

These values are also considered to be orders in the protocol,
they will be used to sort the cipher. The sender side will also
use an “order mask” (OM) to record these values because they
will be used in the decryption process. The sender side will
create an array with 16 positions (the index is from 0 to 15)
to record how many times each value appears. In the above
example, number ‘5’ appears one time, number ‘6’ appears
five times, number ‘8’ appears one time, number ‘12’ appears
two times, and number ‘15’ appears one time. The result of

this array should look like in Table I. The values in the right
column will be contained in the OM.

0 => 0
1 => 0
2 => 0
3 => 0
4 => 0
5 => 1
6 => 5
7 => 0
8 => 1
9 => 0
10 => 0
11 => 0
12 => 2
13 => 0
14 => 0
15 => 1

TABLE I
ORDER MASK, VALUES ARE ON THE RIGHT

In short, we have introduced how to get resistances from
RT by using Ai and Cj . These resistances will be seen as
ciphers directly, and decimal value of PT blocks is known as
order, which will be used for sorting these ciphers. Also. the
number of blocks extracted from PT will decide the number
of ciphers. Such as in the example whose PT is “hello;” it has
a total of 10 blocks, so the sender side will extract ten values
from RT as well.

Then the sender side will decide which ten values in RT
will be used as ciphers. Figure 5 explains this process. First,
the sender side will extract ten values from the RT by using
decimal values of “address” and “current,” which are extracted
from blocks of MD. A0 and C0 will give us RT0,0, A1 and C1

will provide RT1,1, and so on, until the A9 and C9 will give
us RT9,9. The subscripts of A and C represent which block
they are using from MD; in this step, the sender reads from
the first block of MD (subscript is 0). From now on, we will
use R[i] to represent RTi,i for simplicity. The ten values R[0]
to R[9] are candidates for the cipher.

In the process of getting R[i] from Ai and Ci, the protocol
will create another mask which is the “resistance mask”
(RM) that will be responsible for recording which position
in R[i] array contains the same resistance. The RM will only
consist of either 0’s or 1’s. ‘0’ means the value in R[i] array
corresponding to this position (0’s position in RM) is unique,
and ‘1’ means the value in R[i] corresponding to this position
(1’s position in RM) is repeated. The protocol will avoid
repeated resistances as ciphers. So, the sender side will check
and delete the same value in R[i] array and push ‘1’ to RM to
label this position. To illustrate, let’s use the example. If the
characters in PT are “hello;” and from R[0] to R[9], the value
of R[8] is the same as the value of R[0], the sender side will
use ‘1’ to represent this repeated condition in RM. Table II
below illustrates this step.

When sender side finds that R[8] is equal to R[0], it will
use ‘1’ for this position in RM and will not use R[8] as a
candidate cipher. After discarding R[8], the sender side will
have a total of 9 candidates whose values are all unique; these



R[i] R[0] R[1] R[2] R[3] R[4]
RM 0 0 0 0 0
R[i] R[5] R[6] R[7] R[8] R[9]
RM 0 0 0 1 0

TABLE II
RESISTANCE MASK, AND R[8] IS THE SAME AS R[0]

nine values are the cipher to be sent by the sender side. But
that is not enough; the protocol needs ten ciphers since the
PT has been divided into ten blocks. As a result, the sender
side will read one more value R[10] from the RT, which is
got through A10 and C10. Then the sender will check if R[10]
is different from R[0] to R[9]. If so, the sender side will use
R[10] as the 10th cipher and use ‘0’ to label this position in
RM. The result after this operation is shown in Table III.

R[0] R[1] R[2] R[3] R[4]
RM 0 0 0 0 0

R[5] R[6] R[7] R[8] R[9] R[10]
RM 0 0 0 1 0 0

TABLE III
READ A NEW VALUE R[10] FROM RT

In addition, the length of the RM is not fixed. In Table
III, only R[8] and R[0] are repeated, so the sender side used
‘1’ to represent that and then read a new value from the RM
as a new cipher. Then the 10 values R[0] to R[10] (R[8] is
dropped) will be included in our transit cipher (C

′
). Table IV

illustrates this example:

R[0] R[1] R[2] R[3] R[4]
Transit Cipher C

′
C

′
0 C

′
1 C

′
2 C

′
3 C

′
4

R[5] R[6] R[7] R[9] R[10]
Transit Cipher C

′
C

′
5 C

′
6 C

′
7 C

′
8 C

′
9

TABLE IV
BUILD TRANSIT CIPHER C

′
FROM R[0] TO R[10]

But there is the possibility that the new value R[10] is also
repeated with other values from R[0] to R[9] which needs to
use another ‘1’ in the RM, and then read a new value R[11]
from the RT. In this case, the length of the RM will be 12.
The length of the cipher will be still 10, which means the
length of the RM may change, but the length of the cipher is
fixed, only depending on the number of blocks of PT. Also,
the sender side has got 10 decimal values from blocks of PT;
the sender side will call these values “order” (Od) because it
will use these values to sort C

′
. The Od and C

′
are shown in

Table V. The values of Od used here are from Figure 6.

Od 6 8 6 5 6
Transit Cipher C

′
C

′
0 C

′
1 C

′
2 C

′
3 C

′
4

Od 12 6 12 6 15
Transit Cipher C

′
C

′
5 C

′
6 C

′
7 C

′
8 C

′
9

TABLE V
TABLE CONTAINS ORDER AND TRANSIT CIPHER

The next step is to sort C
′

according to Od and then get
the final cipher (FC). Figure 7 illustrates it.

As shown, the protocol will sort the transit cipher in the
ascending order according to the values in Od array. For
example, number ‘5’ is the smallest in Od array, and the transit
cipher corresponding to ‘5’ is C

′

3. So C
′

3 will be in the first
position in the final cipher FC. Then, number ‘15’ in Od array

Fig. 7. How to get final cipher (FC)

is the largest value, so the value C
′

9 corresponding to it should
be in the last position of FC. Finally, after sorting the C

′
based

on Od array, the result will be shown in Table VI.

Od 5 6 6 6 6
Final Cipher FC FC0 = C

′
3 FC1 = C

′
0 FC2 = C

′
2 FC3 = C

′
4 FC4 = C

′
6

Od 6 8 12 12 15
Final Cipher FC FC5 = C

′
8 FC6 = C

′
1 FC7 = C

′
5 FC8 = C

′
7 FC9 = C

′
9

TABLE VI
FINAL CIPHER IN CORRECT ORDER

So far, we have got the final cipher FC, the resistance mask
RM, and the order mask OM. To implement decryption on
another side, they all need to be sent to that side. FC can be
sent directly and safely, but it is not safe to send two masks
in the same way without any protection.

The protocol will implement XOR (Exclusive or) operation
on these two masks and half of MD separately in order to
ensure the safe transmission of information. This step is shown
in Figure 8.

Fig. 8. Encryption Part3

The protocol uses XOR function here because XOR is
an involutory function, which means if the protocol applies
XOR twice, it can get the original RM and OM back during
decryption [12]. For RM, the protocol will use it to perform
XOR operation with the first half of MD, and OM uses the
second half of MD to perform XOR operation. After that,
“Mask1” and “Mask2” will be generated, which are both 512
bytes long. “Mask1” and “Mask2” are different from the two
initial masks OM and RM. But RM and OM are shorter than
half of MD, so when doing XOR operation, the system will
automatically fill in some bytes at the end of these two masks



to let them have 512 bytes. Finally, “Mask1” and “Mask2”
will be sent to another side. That is all for encryption.

IV. DECRYPTION

Upon receiving “Mask1”, “Mask2”, and FC, the receiver
side will use this information to restore the same PT gener-
ated in encryption. In environmental setup section, we have
mentioned that the RN and PW will be known by both sides.
So, the receiver side can get the same MD by doing the same
operation that the sender side have done with encryption. And
the “Mask1” and “Mask2” are both obtained by doing XOR
operation with half of MD. XOR is an involutory function. If
the protocol applies XOR twice, it will get the original thing
back. Figure 9 illustrates that the receiver side can retrieve the
RM and OM back by implementing XOR operation with MD
again.

Fig. 9. Retrieving OM and RM

In Figure 9, after the XOR operation is performed on the
“Mask1” and the first half of MD, the receiver side will get the
RM back. The problem here is that the receiver side does not
know which part in the RM is for regulating ciphers. Taking
the previous example whose PT is “hello,” the actual length of
RM is 11, but after the XOR operation in encryption, its length
becomes 512 bytes. So, the receiver side gets a 512-byte RM,
and does not know which part is useful.

The receiver side will use another method to solve this
problem. Because both sides have the same MD and share
the same Ai and Cj , A0 and C0 will provide R[0] on both
sides, A1 and C1 will provide R[1] on both sides and so on.
As some unique R[i]’s will be used as C

′
directly, then FC

will be generated based on sorting C
′
. Figure IV shows the

relationship between C
′

and FC.

C
′

C
′
3 C

′
0 C

′
2 C

′
4 C

′
6

FC FC0 = C
′
3 FC1 = C

′
0 FC2 = C

′
2 FC3 = C

′
4 FC4 = C

′
6

C ’ C
′
8 C

′
1 C

′
5 C

′
7 C

′
9

FC FC5 = C
′
8 FC6 = C

′
1 FC7 = C

′
5 FC8 = C

′
7 FC9 = C

′
9

TABLE VII
RELATIONSHIP BETWEEN FC AND C

′

As a result, if the R[i] is contained in C
′
, it must also be

found in FC. The receiver side will loop from A0 and C0

and get its corresponding R[0] from the RT, and then check
if R[0] appears in FC. If so, it will continue to search until
an R[m] value is not found in FC, it will stop searching, and
elements from R[0] to R[m-1] must be C

′
’s elements. Next,

the receiver side will count how many elements are there from
R[0] to R[m-1], and the result will give the receiver side the

useful part in the RM. This useful part will be named ERM.
The receiver will use ERM to get C

′
. Using the same example

whose PT is “hello,” the ERM obtained above is shown in
Table VIII.

0 0 0 0 0 0 0 0 1 0 0
TABLE VIII
ERM TABLE

And R[i] got from the RT will be shown in Table IX:

A0, C0 → R[0] A1, C1 → R[1] A2, C2 → R[2] A3, C3 → R[3] A4, C4 → R[4]
A5, C5 → R[5] A6, C6 → R[6] A7, C7 → R[7] A8, C8 → R[8] A9, C9 → R[9]

A10, C10 → R[10] A11, C11 → R[11] A12, C12 → R[12] ..

TABLE IX
RESISTANCES FROM RT

There will be a lot of resistances extracted from the RT,
but since the length of the ERM is 11, the receiver side will
only use 11 values from R[0] to R[10]. The value in the
ERM determines which R in Table IX can be used as C

′
.

For example, the corresponding value of R[0] is ‘0’ in Table
VIII, so R[0] will be pushed to C

′
. But if the corresponding

value is ‘1,’ that value will be discarded such as R[8]. Then
other values from R[0] to R[10] will become elements of C

′
.

The C
′

the receiver side gets here is the same as the previous
one when encrypting. Figure 10 provides a summary of the
above steps.

Fig. 10. Decryption Part1

After getting FC and C
′
, the receiver side will get the OM

by doing XOR operation on “Mask2” and second half of MD.
The first 16 values in the output are useful and should be same
as the right side in Table X.

In Table X, see following page, the numbers on the left
side are indices, and the numbers on the right side are the
content really included in the OM. For example, “5 => 1”
means number ‘5’ appears one time, “6 => 5” means number
‘6’ appears 5 times, until “15 => 1” means number ‘15’
appears one time. The result in Table XI turns the number of
occurrences into actual numbers. Because number ‘6’ appears
five times, there will be five 6’s in the table.

The receiver side thinks of it as an array with 10 elements,
and we will call it RO, which means “random order.” The
reason is, compared with Table V, the elements in RO array



0 => 0
1 => 0
2 => 0
3 => 0
4 => 0
5 => 1
6 => 5
7 => 0
8 => 1
9 => 0
10 => 0
11 => 0
12 => 2
13 => 0
14 => 0
15 => 1
TABLE X

ORDER MASK, VALUES ARE ON THE RIGHT

5 6 6 6 6
6 8 12 12 15

TABLE XI
RANDOM ORDER ARRAY RO

are same as the elements in Od array but in a different order.
If the receiver side wants to get a correct PT, it has to turn
it into the correct order. The plan implemented is shown in
Figure 11.

Fig. 11. Decryption Part2

The receiver side will make a pair of C
′

and RO as
described in Figure 11. And then it will find each value of
C

′
in this pair and get its corresponding ROi. The example

is shown in Table XII. Numbers in the “Corresponding RO in
the Pair” row are the same as the numbers in Od array, and
they are in the same order.

(FC,RO) Pair (FC0,5) (FC1,6) (FC2,6) (FC3,6) (FC4,6)
Relationship between FC and C

′
FC0 = C

′
3 FC1 = C

′
0 FC2 = C

′
2 FC3 = C

′
4 FC4 = C

′
6

(FC,RO) Pair (FC5,6) (FC6,8) (FC7,12) (FC8,12) (FC9,15)
Relationship between FC and C

′
FC5 = C

′
8 FC6 = C

′
1 FC7 = C

′
5 FC8 = C

′
7 FC9 = C

′
9

Transit Cipher C
′

C
′
0 C

′
1 C

′
2 C

′
3 C

′
4

Corresponding RO in the Pair 6 8 6 5 6
Transit Cipher C

′
C

′
5 C

′
6 C

′
7 C

′
8 C

′
9

Corresponding RO in the Pair 12 6 12 6 15

TABLE XII
GET CORRECT OD ARRAY BY SEARCHING C

′
IN THE Pair

So far, the receiver side has got Od array back. Every
two values in Od array represent one character and can be
converted into their corresponding character through ASCII
table. For example, the first two numbers in Od are ‘6’ and ‘8,’
then the receiver will combine them into hexadecimal notation,
which is “0x68.” The character corresponding to “0x68” in
ASCII table is ‘h.’ Finally, the receiver side will convert the ten

numbers in RO array into five characters and get the original
PT - “hello.” That is all for decryption.

V. SECURITY EVALUATION

It is important that other people cannot retrieve cipher values
by observing cell usage in RT. So, in this section, we discuss
and verify the security of the protocol by measuring cell
usage. We have introduced that ciphers came from the RT
directly, where the RT is a two-dimensional array with 128
rows and 8 columns, a total of 1,024 cells. The protocol
uses addresses and currents which are obtained from MD to
determine specific cell from RT. Then these cell values will
be treated as cipher after sorting. The problem is that if we
encrypt different messages, the values extracted from the RT
each time are the same, which means that ciphers used are
almost the same every time. Hackers can decipher information
by observing cipher usage. But if every data in the RT has the
opportunity to be used, the ciphers generated during encryption
will be different, which will increase the difficulty of cracking
our message. So, we will measure the cell usage in the form
of a statistical chart below [13].

Figure 12 is the Scatter graph after doing encryption and
decryption 1,000 times with 140 random characters. 140 char-
acters is the maximum value that the protocol can implement
encryption and decryption in the case where the MD length
is 8,192 bits. We want to test the performance of the protocol
in extreme states. There are 128 rows and 8 columns in the
RT, which constitute a total of 1,024 cells. In Figure 12, the
horizontal axis represents the row number, the vertical axis
represents the number of times used, and the points with
eight different colors represent the column number. So, Figure
12 shows how many times each cell is used. As Figure 12
demonstrates, each cell has been called approximately 520
times, which means each cell has been used a similar number
of times without the extremely unsafe situation where some
cells have been used tens of thousands of times, and some
have been used only a few times.

Fig. 12. Scatter graph for each cell in RT, 1,000 times, 140 characters

Figure 13 is similar to Figure 12, but it does not show the
usage for each cell. It shows the usage of each row. From
Figure 12, we can see that each cell is used about 520 times,
and there are 8 cells in a row, so it is expected that the number
of uses per row should be around 4,160. The data in Figure
13 confirms our expectations.



Fig. 13. Column chart for each row in RT, 1,000 times, 140 characters

In order to get more accurate results, we performed more
tests. As shown in Figures 14 and 15 below, we used 140
random letters for encryption and decryption 10,000 times.

Fig. 14. Scatter graph for each cell in RT, 10,000 times, 140 characters

The data in Figure 14 has the similar meaning as in Figure
12, the only difference is the number of tests. Under 10,000
tests, we can see that most cells are used around 5,000 times,
and the smallest value in the graph is still greater than 4,900.
There is no case where the cell is not used or is rarely used.

Fig. 15. Column chart for each row in RT, 10,000 times, 140 characters

Then, in Figure 15, the data reflects the number of times
each row is called. Again, all of the values in the column chart
are larger than 40,000. The largest value in the chart is about
41,800. The gap is within acceptable limits.

By verifying the encryption and decryption procedure of
140 characters 1,000 and 10,000 times, we found that our
method has very high and similar utilization rates for different
cells in the RT; even under 10,000 tests, there are no special
cases. In general, we can conclude that the protocol is safe,
and it is not easy for hackers to decipher the message by
discovering cell usage.

VI. CONCLUSION

This paper proposed an extended protocol based on memris-
tor arrays to perform encryption and decryption without using
any keys. First, an MD is generated on the sender side and the
receiver side using the hash function. Then, both sides import
the resistance table, which is obtained from the memristor
arrays. Next, the plaintext to be encrypted is divided into
small blocks. Finally, the protocol uses decimal values of these
blocks to sort the ciphers extracted from resistance table. In
the evaluation section, this paper also provided security proof
for this protocol in the case of multiple tests. Going forward,
we want to implement the protocol into hardware because
hardware design was not involved with our study. For example,
we can build two communicating devices based on memristor
arrays [5],[14]. If so, ciphers generated can only be decrypted
by the same memristors stored in separate devices.

REFERENCES

[1] P. Kocher, J. Jaffe, B. Jun, and P. Rohatgi, “Introduction to differential
power analysis,” Journal of Cryptographic Engineering, vol. 1, no. 1,
pp. 5–27, Apr 2011. [Online]. Available: https://doi.org/10.1007/s13389-
011-0006-y

[2] N. Baracaldo, L. A. D. Bathen, R. O. Ozugha, R. Engel, S. Tata,
and H. Ludwig, “Securing data provenance in internet of things (iot)
systems,” in International Conference on Service-Oriented Computing.
Springer, 2016, pp. 92–98.

[3] R. Roman, P. Najera, and J. Lopez, “Securing the internet of things,”
Computer, no. 9, pp. 51–58, 2011.

[4] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things
(iot): A vision, architectural elements, and future directions,” Future
generation computer systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[5] B. Cambou, S. Assiri, and D. Hely, “Memristors to design keyless
encrypting devices,” ACM Journal on Emerging Technologies in Com-
puting Systems (JETC), unpublished.

[6] B. Francis Cambou, “Design of true random numbers generators with
ternary physical unclonable functions,” Advances in Science, Technology
and Engineering Systems Journal, vol. 3, pp. 15–29, 05 2018.

[7] B. Cambou, “A xor data compiler: Combined with physical unclonable
function for true random number generation,” 07 2017, pp. 819–827.

[8] B. Cambou and M. Orlowski, “Design of pufs with reram and ternary
states,” in Proceedings of the 11th Annual Cyber and Information
Security Research Conference, Oak Ridge, TN, USA, 2016, pp. 5–7.

[9] J.-W. Han, C.-S. Park, D.-H. Ryu, and E.-S. Kim, “Optical image
encryption based on xor operations,” Optical Engineering, vol. 38, 1999.

[10] C. Boutin, “Nist releases sha-3 cryptographic hash standard. nist infor-
mation technology laboratory,” 2015.

[11] A. Kaushik, A. Kumar, and M. Barnela, “Block encryption standard for
transfer of data,” in 2010 International Conference on Networking and
Information Technology. IEEE, 2010, pp. 381–385.

[12] C. Li, S. Li, G. Alvarez, G. Chen, and K.-T. Lo, “Cryptanalysis of
two chaotic encryption schemes based on circular bit shift and xor
operations,” Physics Letters A, vol. 369, no. 1-2, pp. 23–30, 2007.

[13] A. Kahate, Cryptography and network security. Tata McGraw-Hill
Education, 2013.

[14] R. Stanley Williams, “How we found the missing memristor,” in Chaos,
CNN, Memristors and Beyond: A Festschrift for Leon Chua With DVD-
ROM, composed by Eleonora Bilotta. World Scientific, 2013, pp. 483–
489.


