q

Check for
updates

Password Manager Combining Hashing
Functions and Ternary PUFs

Bertrand Cambou®™®

Northern Arizona University, Flagstaff, USA
Bertrand. cambou@nau. edu

Abstract. Hashing functions protect passwords against various hacking tech-
niques because message digests can replace the passwords when stored in the
network for future authentication. However, the message digests remain exposed
to password guessing attacks, most hashing functions are known, and public.
The objective of the protocols presented in this paper is to offer additional lines
of defense using physical unclonable functions to convert the message digests
into challenge-response pairs. The use of ternary physical unclonable functions
reduces false rejection rates, and lowers the latencies during the processing of
the authentications. Without having access to the PUFs, the look up tables
storing challenge-response pairs are more difficult to attack than those storing
message digests: they are unclonable, contain high levels of randomness, and
quasi unique. The modeling efforts, and algorithms developed in this paper to
validate the schemes, use commercially available components, and SRAM
based ternary PUFs.

Keywords: Password management - Physical unclonable function -
Hash functions - Ternary states

1 Introduction

The essence of access control is to match reference patterns such as passwords, secret
keys, and biometric prints, against the same reference patterns of the users, which are
stored in look up tables of the secure servers managing the networks [1-3]. One of the
known exposures in the cyber space, is the potential loss to malicious entities of the
look up table storing UserID-password pairs. Hackers are often able to damage insti-
tutions, and individual users by getting un-authorized access to databases of millions of
passwords at once. Examples include attacks on internet providers, US government
agencies, the IRS, health institutions, political parties, banks, and much more [4-7].
These types of cyber-attack, creates huge financial damages, and can be the result of
insiders that are silent for years. A false sense of security can exposes millions of users
overnight.

Ways to protect passwords and look up tables, from both external and internal
attackers, have been proposed [8—14]. Several layers of protections for the access
control are proposed in this paper; the first layer is the replacement of the userID-
password pair by message digests of hashing functions [15-17]; the second layer is the
replacement of the message digests by challenge response pairs (CRP) of physical

© Springer Nature Switzerland AG 2019
K. Arai et al. (Eds.): CompCom 2019, AISC 998, pp. 1-20, 2019.
https://doi.org/10.1007/978-3-030-22868-2_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22868-2_37&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22868-2_37&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22868-2_37&domain=pdf
https://doi.org/10.1007/978-3-030-22868-2_37

2 B. Cambou

unclonable functions (PUFs) [18-26]. In both cases, the exposure to stolen databases is
lower, because the content of the tables is not directly exploitable to gain access to the
original UserID-password pairs. The protection offered by PUFs is much higher, and
mitigates attacks based on the knowledge of look up tables using message digests, and
hashing functions [27, 28]. However, the need to use an error correcting code can be
extremely complex [29-35]. Therefore, novel methods based on ternary PUFs, that are
error correction free, are proposed. The architectures developed in this paper, reuses
known technology modules, such as memory based PUFs, true random number gen-
erators, functions, and public key infrastructure. Several prototypes, containing both
hardware and software components, were designed to evaluate, and validate the pro-
posed schemes.

2 Background Information

2.1 Hash Function for Password Managers

Hash functions [36-38] are one-way cryptographic methods to generate message
digests of fixed lengths, from incoming data streams of variable lengths. Hash functions
have the following properties:

e A single bit change in the incoming data stream results in a totally different message
digest.

e The incoming data streams cannot be extracted from the message digests.

e The hash functions are collusion resistant: the probability that two different streams
result in the same message digest is extremely low.

Hash functions are pivotal in multiple cryptographic applications such as multi-
factor authentications, and blockchains [39—44]. Hash functions replace, the look up
tables containing User ID-password pairs [45], as shown in Fig. 1.

(- . Data base |
User)@PW] Hash=— Addi =) pqd1: h(Pwi)
Server Add2: h(PWu)
I ‘ PWJ @ﬁ) h(PWJ) =p Addi : h(PWJ)
User) —— AddN:l;(PWw)
o) Authentication }—

Fig. 1. Block diagram describing the data flow. Passwords and UserIDs are converted into
message digests then into addresses (h(ID@pass)). On the right, the look up tables store the
message digests.

Password Manager Combining Hashing Functions and Ternary PUFs 3

The hashing of the password PWj results in the first message digest h(PWj); the
user ID Userj and PWj are XORed; the hashing of Userj © PWj results in the second
message digest h(Userj © PWj). A portion of the second message digest is then used
to generate the coordinate XY of the look up table storing the first message digest. The
XORing of the user ID, and the password, enhances the protection, and this because the
hashing of the User ID alone is weak, considering that most hashing functions are
known and public.

To explain this method we developed a small example shown in Tables 1 and 2.
Here we are using SHA-1 for its simplicity; however, for the prototypes proposed in the
remaining sections of this paper, we used SH-3, which is safer, even in cases of attacks
from quantum computers. In this example, user#1 has a user ID “a6c26”, a password
“12ae5”, and a first message digest “a639d” generated with SHA-1; only the first five
characters of the message digest are kept. The XORing the first three hexadecimal
characters of the user ID and the password have a value of “b86”. The hashing of “b86”
with SHA-1 generates a message digest that has “3e” as first two hexadecimal char-
acters. We then place “a639” in the address “3e” of Table 2. Five more UserID-
password pairs are stored in a similar way in the look up Table 2.

Table 1. Example showing the conversion of user IDs, and passwords into message digests, and
an addresses, with hash functions.

User ID |PW | h(PW) ID®PW | h(ID®PW)

1 a6¢26 | 12ae5 | a639d | b86 3e
2 a311f |221ab 44d46 | 81f 90
3 edO11 22131 |a3171 |dfe 8c
4 15cab | 320f1 | 7d5ff | 27¢ af
5 87alb | 775ed | 0454b | fOf 93
6

lacf6 | 523c0 | 9bdfc | 48f ba

Table 2. Look up table storing the hashing of the passwords.

YX|0 1123 4/5/6/7/8|9|A Blc dle f
0

1

2

3 a639d
4

5

6

7

8 a3171

9 |44d46 0454b

(continued)

4 B. Cambou

Table 2. (continued)

YX|0 112(3 4/5/6/7/8/9A Bic dle f
A 7d5ff
B 9bdfc

C

D

E

F

Such a method is applicable to store very large quantities of UserID-Password
pairs. During authentication cycles, the users provide their UserID/Password pair; the
information extracted from the table at the corresponding address is then compared to
the message digest provided by the password. When SHA-1 is replaced by more
powerful hashing functions (ex: SHA-3), such look-up tables are much more secure
than the tables directly storing UserID-Password pairs. The method can handle low
levels of collisions, i.e. multiple messages digests located in the same address, or
multiple Users sharing the same message digest.

Vulnerability of the Method. When look-up tables storing message digests are lost to
the enemy, information can also be lost overtime with password guessing methods, big
data analysis, and brute force hashing of commonly used passwords. For example, if
the attacker knows that a particular user trends to use a set of passwords, the attacker
can hash these passwords, and see if the message digests exist in the table. When
millions of users are involved, the loss of can have a considerable impact, with legal
exposure for the operator. Other issue of this password manager is the potential loss of
the password by the user. The password manager cannot erase the message digest
because the address in the look up table is also lost. One remedy is to implement a
counter, which is incremented every time a user forgets the password. When the user
login after the loss, its password can be concatenated with an index that is incremented
at each loss. If the previously lost password is used again, the concatenated version
with the index will not be recognizable.

2.2 Physical Unclonable Functions

PUFs generate patterns from hardware components that act as human fingerprints,
which are unclonable, random, and make each device authenticable from each other
[18-25]. The design of the PUF exploits the manufacturing variations created during
their fabrication. In this paper, we are calling challenges, or initial responses, the
patterns generated upfront by the PUF, while the responses are generated during each
access control cycle. The authentications are positive when the matching challenge-
response-pairs (CRPs) are high, with a low rate of error, i.e. mismatch. Methods to
design PUFs include the use of logic components with gate delays, arbiters, and ring
oscillators [18-20]. A PUF designed with ring oscillators is shown in Fig. 2.

Password Manager Combining Hashing Functions and Ternary PUFs 5

(1—_|:)>/\/\I>v—/\/\ﬂ:|>o—/\/\r<| >o—l Output)

E

L

deMUX X2

7

uE €

\

>§< ‘ { Countej

—-D'WD"_ >:1lor<:0
an
{>o_

T (
INPUT ———— Pairs of ring oscillator ———Jp| INPUT

Fig. 2. Block diagram of a PUF designed with ring oscillators.

Pairs of ring oscillators selected among the n possible pairs, are analyzed using two
counters. If the number of oscillations of the ring going to the top MUX is greater than
the number of oscillations of the ring going through the bottom MUX, the challenge
(during initial set up, or response during authentication) is a “1”, if not, the challenge
(or response) is a “0”. If for example, the address of 128 successive pairs is transmitted
to the PUF, 128-bit challenges (or responses) are generated.

Memory structures [46-55], SRAM [46, 47], DRAM [48], Flash [49, 50], ReRAM
[51-53], and MRAM [54, 55], are also excellent elements to generate strong PUFs. The
method to generate PUFs from SRAM arrays is to subject the device to power-off-
power-on cycles. A significant proportion of the cells always restart as either a0, ora 1,
thereby generating CRPs. One of the generic methods to generate CRPs from memory
devices is to characterize a particular parameter P of the cells of the array. The values
of parameter P vary cell to cell, and follow a distribution with a median value T. In
order to generate challenge and response pairs, all cells with P < T generate “0” states,
and the others generate “1” states. The resulting streams of data become PUF CRPs to
authenticate the array.

Various PUFs have different figures of merit, and strength against attackers.
A hostile party cannot simply read the entire PUF array of a strong PUF, and use the
reading to communicate with a network of client devices. The cloning of the entire
array would be a security threat; however, the level of randomness of such a component
is so high that this type of attack is highly unlikely. The use of ternary PUFs reduces
the challenge-response-pair (CRP) error rates [56—60].

6 B. Cambou

3 Password Managers with PUFs

3.1 Password Generators with PUFs

One time password generators can be designed with addressable PUF generators
(APG) [45, 61]. The block diagram of the APG is shown in Fig. 3.

a hallengeeg

espon

Memory based PUF

Controller ’
Address
XY

Fig. 3. Block diagram of the APG

In this architecture, the controller sends an address XY to the memory array to read
a block of cells from which challenges and responses are generated. For a SRAM PUF,
0 or 1 are read in the block of cells located at address XY after power-off-power-on
cycles. For other memory PUFs, parameter P of the block of cells located as XY is
characterized. The ring oscillator of section II-B is also used as APG. In this case series
of pairs are characterized at each address. The CRP generation varies with the relative
value of the parameters within the multiple cells that are selected at a particular address.
Therefore, as a particular cell could be a “0” when part of one group of cells, and a “1”
when part of a different group, or when read with different instructions.

As described in [45, 61], APGs can be used to generate temporary passwords, and
authenticate users. A block diagram of a temporary password generator with APG is
shown in Fig. 4:

e For password generation, a random number TRN is generated and concatenated
with the UserID, to feed the hash function. An address XY is extracted from the
message digest to point on a particular block of cells in the APG. The reading of the
PUF generates challenges, i.e. the initial responses. The resulting temporary pass-
word is the combination of TRN, and the challenges.

e For authentication, the user transmits the password and its user ID. The same TRN
and UserID are generating the same message digest, the same address XY; the same
block of cells is read to generate responses. These responses are matched with the
challenges provided as part of the temporary password. If the CRP error rate is low,
the authentication is positive.

Password Manager Combining Hashing Functions and Ternary PUFs 7

Password:
TRN Memory based PUF
Challenaes Challenges
Use,,ﬂ Responses }_'

Controller

Fig. 4. Block diagram of a temporary password generator with APG

Multi-factor authentication and encryption was included in our implementation to
protect the password. In the application the PUFs reside in the server, therefore the
device is not subject to significant thermal and other environmental variations, this
results in low CRP error rates. The method uses new random numbers TRN at each
operation for one-time use of the passwords and concatenate TRN, with an index to
eliminate the relevance of previous used passwords.

3.2 Password Manager Architecture with PUFs

Unlike the temporary password generator shown in section III-A, a password manager
allows the user to pick its own password PWj, and user ID Userj. The design of
password managers with PUFs is more complicated than designing password genera-
tors with PUFs. In the architecture presented in this paper, addressable PUF generators
(APG) are combined with the hash function based password manager described in
section II-A. A block diagram describing the scheme is shown in Fig. 5.

e During enrollment, the hashing of Userj & PWj results in the message digest h
(Userj © PWj) from which the address Addi is extracted. The hash of password
PWj generates the address XY in the APG. In our implementation, the memory
space of the APG is an array of 4096 x 4096 cells, the first 12 bits of the message
digest were used to find the X in the array, the next 12 bits to find the Y. Starting
from this address XY, challenges are generated from the n-cells following this
address. The parameter P is then measured, and challenges Chyj, the stream of bits
{Chl, Ch2,Chn}, are generated. The challenges Chj are finally stored in the look
up table at the address Addi.

e The authentication cycles follow the same step by step scheme, resulting in the
same address Addi, and a stream of responses Rej. These responses are matched
with the challenges Chj. Assuming that the CRP error rates are low enough, the
authentication is positive.

8

B. Cambou

Data base
Addi: Cha
Add2: Chb
Authentication g Addi : Chj

AddN: Chw

Addi

Challenges
Responses

Memory PUF

Since hash functions are one-way functions, it is impossible to deduce the input of
the hash function by looking at the address of a PUF array. Unlike traditional data
storage units, the memory arrays used in the APG do not store information; CRPs
cannot be generated from these PUFs without knowing the necessary instructions. If an
attacker is able to have access to the database, the knowledge of the challenges do not
disclose the message digest of the password. This offers additional layers of security,

Fig. 5. Block diagram showing a password manager with APG.

and makes password guessing more difficult.

3.3 Algorithm of Password Managers with PUFs

A summary of the algorithm developed to store the user ID and password in the look-

up table with APGs is presented in Table 3:

Table 3. Algorithm to generate, and store challenges, replacing the passwords.

Step | Description of the instructions Data stream/information | Where
1.0 | Hashing of the password PWj h(PWj) Server
2.0 | h(PWj) converted into the address XY h(PWj) — XY APG

3.0 |Select n-cells in the array located after XY | {n-cells} APG

3.1 Measure parameter P for the n-cells {P1, P2, ..., Pn} APG

3.2 | Generate the challenges Chj € {0, 1} Chj = {C1, C2, ..., Cn} |APG

4.0 | XORing the user ID Userj with PW Userj © PW Server
5.0 | Hashing of Userj © PW h(Userj © PW) Server
6.0 | h(Userj © PW) converted into address Addi | h(Userj © PW) — Addi | Server
7.0 | Store Chj in the database at address Addi | Addi; Chj Database

Password Manager Combining Hashing Functions and Ternary PUFs 9

Step-1: The password PWj feeds the hash function to generate a message digest h
(PWj). Additional security features are not described in this paper, which include the
use of cryptography to protect the passwords, and multi-factor authentication to protect
the user. The hash function can be based on some standard hash algorithms (SHA).
Step-2: The message digest of step one is used to generate the coordinate XY of the
memory array. As suggested above, this could be the first 24-bits of the message
digest, if the size of the memory array is 4,096 x 4,096. Different possible schemes
are presented in Sect. 4.

Step-3: The generation of a stream of challenges Chj = {Chl,....Chn} from the n-
cells located in the memory array which passes the address XY, can be done
differently based on the type of memory technology, and various generation pro-
tocols. Some methods, as suggested Sect. 2.1, can be based on the measurement of
a particular parameter P.

Step-4 and 5: The user ID Userj, and the password PW are Xored to generate the
data stream Userj © PW. The Boolean function XOR can be replaced by other
methods to create a data stream from the user ID.

Step-6: After the hashing of Userj © PW, an address Addi is generated from the
message digest. If, for example, the look-up table has 4,096 x 4,096 positions, the
first 24 bits of the message digest can be used to generate Addi.

Step-7: The challenges Chj = {Chl,....Chn} is stored at the address Addi. In case of
a collusion, i.e. multiple users at the same address, multiple challenges are stored at
the same location, which does not make the authentication more difficult.

A summary of the algorithm developed to authenticate a user with password is

summarized in Table 4.

Table 4. Algorithm to authenticate users with CRPs.

Step | Description of the instructions Data stream/information | Where
1.0 | Hashing of the password PWj h(PWj) Server
2.0 | h(PWj) converted into the address XY h(PWj) - XY APG
3.0 |Select n-cells in the array located after XY | {n-cells} APG
3.1 Measure parameter P for the n-cells {P1, P2, ..., Pn} APG
3.2 | Generate responses Rej € {0, 1} Rej = {C1, C2, ..., Cn} |APG
4.0 | XORing the user ID Userj with PW Userj ® PW Server
5.0 | Hashing of Userj © PW h(Userj © PW) Server
6.0 | h(Userj © PW) converted into address Addi | h(Userj © PW) — Addi | Server
7.0 | Read Chj in the database at address Addi | Addi; Chj Database
8.0 | Find Hamming distance Hj Chj to Rej Hj Server
9.0 | Authentication if Hj below the threshold Yes or No Server

e Step-1to 5: These steps are similar to the one described above, to program the look-
up tables. Rather than generating challenges, responses are generated by the APG at
the same addresses.

Step-6 to 9: The challenges previously stored in the look-up table are compared with
the freshly generated responses. When the Hamming distance Hj between chal-
lenges and responses is bellow a set threshold, CRP error rates are low enough, the
authentications are positives.

10 B. Cambou

4 Password Manager with Ternary PUFs

4.1 Ternary APGs

Typically, PUFs experience 3 to 10% CRP error rates. This is usually acceptable for
authentication when the length of challenge-response-pairs is high enough. The ternary
PUFs are based on three states, (0, 1, X), X being the fuzzy state that is used to
characterize the cells that are not predictable. The CRP error rate measured on the non-
fuzzy states is significantly lower. The results shown in Fig. 6 are based on the
characterization of commercially available SRAM memories. Due to micro-
manufacturing differences, the flip-flop of each SRAM cell randomly emerges from
power-off-power-on as a 0, or a 1. The vast majority of the cells are responding in a
predictable way, therefore acting as a “finger print” of the device. We characterized
32 KB SRAMs, and measured 3 to 5% CRP error rate at each power-off power-on
cycles. We then subjected the memory cells with successive power-off power-on
cycles, and masked with a ternary state “X” the cells having CRP errors. As a function
of the number of queries, the percentage of the cells that are not stable (the one marked
“X™), are plotted at the bottom portion of Fig. 6. The corresponding CRP error rates of
the non-fuzzy states are plotted at the top portion of Fig. 6. Below 10 cycles, the CRP
error rates are in the 0.3 to 5% range, above 80 cycles the rates are in the 0.01% to
0.03% range. In our software implementation, the cells were cycled 100 times during
enrollment, 12% of the cells are marked X, 44% are “0”s, and 44% are “1”s. The
average CRP error rates of the non-fuzzy cells were at 0.01%. Two possible modifi-
cations of the protocol described in Sect. 3 are suggested to process the ternary PUFs.

First method: To store the ternary states in the look up table. In this method, during
the enrollment of the password PWj, the server generates streams of trits (0, 1, X) Chj
from the PUF array. Chj is stored at the address Addi in the look-up table shown in the
block diagram of Fig. 4. In our implementation, the “0” are stored in the look up table
as (01), the “1” as (10), and the fuzzy “X” as (11). During authentication, the response
generation is binary, only “0”’s and “1”’s are extracted. Only the non-fuzzy states stored
in the look up table are counted for CRP error rates estimate. This protocol is imple-
mentable with SRAM PUFs, and with memory PUFs that are based on a parameter P.
Within the n-cells that are used for challenge generation, at a particular address XY of
the array, the bottom 1/3 are “0”s, the middle 1/3 are “X’s, and the top 1/3 are “1”’s.
During response generation, the same n-cells are sorted in the bottom half for the “0’’s,
and into the top half for the “1”s. In this method, the error rates are extremely low; no
error correcting methods are needed. The latency of the enrollment of each new
password is here higher, while the authentication cycles are fast.

Second method: Upfront characterization of the entire array. In this method, the
entire PUF array is characterized upfront to identify all fuzzy cells of the array, and
mark them with an “X”. During the enrollment of the passwords, and the corresponding
challenge generation, the fuzzy cells located pass the address XY are ignored, and the
n-bits kept are non-fuzzy, i.e. binary. The resulting challenges consist of streams of bits
that are stored in the look-up table. During response generation, the same fuzzy cells
are ignored, resulting in binary streams that are compared with the challenges stored in

Password Manager Combining Hashing Functions and Ternary PUFs 11

2.5% Errors 7 ™
2.0%
1.5%
1.0 %
0.5% |
0% w —
2 8 8 8 8 8 8 8'§§§§§
] I # qQudries Do
Error rate | Error rate
0.3% to 5% 0.01% to 0.03%
——— n
12 % % cells Excluded ’
__,___4%———————‘—'
10 %
8% ///
6 %
4%
2%
0% # queries
|2 R 8 3 B8R L 828 8 8

Fig. 6. CRP error rate reduction by masking the fuzzy cells of a SRAM.

the lock up table. The lengthy upfront characterization is done only once, both
enrollment and authentication cycles are relatively fast.

The first method is more desirable than the second one, on a security standpoint.
The entropy of the stored challenges Chj is higher. The number of possible configu-
rations of a stream of n trits is 3" versus 2" for a stream of bits. Attacks such as
password guessing are therefore more complex.

4.2 Double Addressing with Ternary APGs

In the scheme presented above in section IV-A, only the content of what is stored in the
address Addi incorporate the patterns generated by the PUFs. Small error rates, below
7%, in CRPs do not add latencies in the matching algorithm. The use of ternary PUF
reduces the error rates, and latencies. The question addressed in this section is the
potential use of PUF CRPs to replace both password PWj by Chj, and address Addi by
the address Cddi, also extracted from the PUFs. An error in the address would send the
search engine to the wrong part of the look up table, which could be difficult to handle.
The block diagram of a ternary PUF password manager with double addressing is
shown in Fig. 7.

12 B. Cambou

B-Userl@Pwj | patabase Cddi from CRP-2
A=PWj Cdd?2: Chb Chj from CRP-1
Authentication

Cddi : Chj
CddN: Chw

Challenges
Responses

Memory PUF
.: '.Yz".” MG

Server

Fig. 7. Block diagram of a password manager with two addressing schemes.

e The enrollment of a new UserID-Password pair has two steps. The first one, as
described previously, where the APG generated at the address XY, the challenges
Chj from the password PWj, to store it in the look up table. In the second step, the
message digest h(Userj © PWj) is used to find a second address X,Y, in the APG.
The challenges extracted at this second address are then used to find the address
Cddi in the look up table where Chj is stored. For example, if the size of the look-up
table is 4096 x 4096, the first stream of the 12 bits of the challenges is used as the
first coordinate, and the second stream of 12 bits for the second coordinate.

As a result, not only the content of the look up table is generated from the PUF, but
the addressing system is also extracted from the PUF.

e The authentication of the user follows a similar method. The password generates, at
the address X;Y;, the responses Rej, and the message digest h(Userj © PWj) is
used to find the address Cddi from the responses generated at the address X;Y;. If
Cddi/Rej is matching the reference Addi/Chj, the authentication is positive.

The use of ternary PUFs, as described below in section IV-C, is important to
mitigate potential mismatches between Addi and Cddi in case of CRP errors, which
could result in pointing to the wrong stream in the look up table.

Password Manager Combining Hashing Functions and Ternary PUFs 13

4.3 Error Matching Algorithms

The two figures of merit of the password generator that are analyzed in this section are
the false rejection rate (FRR), and latency of the matching algorithm. The objective of
the matching algorithm is to minimize FRR to an acceptable level, while keeping the
latency low enough. To keep the user experience enjoyable, we target an FRR below
10~*, and latencies under 3 s.

With PUFs having CRP error rates of 3%, the rate of bad addressing is estimated
with statistical models such as Poisson.

e If the CRP error rate is 3%, with 24-bit address, the probability to get at least 1bit
error in the address is 51%, and the probability to get at least 2 is 22%. This error
rate is prohibitive.

e With ternary PUFs, if the CRP error rate is 0.03%, the probability to get at least 1
bit error is 0.7%, and the probability to get at least 2 is 2.6 - 10™°. The probability to
get at least 3 errors is only 6 - 107°,

To find the matching address we designed our codes based on the algorithm shown
in Fig. 8. The challenge stored in the look up table, at the address Cddi is Chi. The
authentication is positive when the hamming distance between Rej, the response
generated by the APG from the password PWj, and Chi is below an acceptable
threshold Hmax.

é Rej | Cddi, chi h
' Hamm(Rej; Chi)<Hmax ? | Yes ju) Accept
No
a=1
a=a+l >
‘@* Yes ju) Reject
No
k=1
k = k+1 >
i,
‘ Hamm(Rej; Chi-ak)<Hmax ? H Yes |u Accept
No
-
< Yes y

Fig. 8. Algorithm to find the matching address in the look up table.

14 B. Cambou

If negative, all k challenges Chi-1k located in the look-up table at the addresses
Cddi-1k are considered. The addresses Cddi-ak have a Hamming distance of one with
the address Cddi. The authentication is positive when the Hamming distance between
one of the k challenges Chi-1k, and Rej is below the threshold Hmax.

If negative, the process iterates to consider all k challenges; Chi-ak located in the
look up table at the addresses Cddi-ak having a Hamming distance a with Cddi. The
iteration stops when the Hamming distance reaches the threshold amax, therefore
rejecting the authentication.

With 24-bit addresses, there are only 24 addresses with a Hamming distance of 1
within a given response, so step-2 is quick. The likelihood to have to go to the next
step, @ = 2, is small (If CRP error rate is 0.03%, the probability is 2.6 - 1075). The

number of addresses with a Hamming distance of 2 with Cddi is (224) = 273.

Based on the ternary SRAM PUF that we characterized, if a,,,4, = 2, the resulting
false rejection rate (FRR) of the protocol is 2 - 10>, which is the probability to have the
hamming distance at 2 or higher. When @,,4, = 3, the resulting FRR is 6 - 10~%, with
the probability to have the hamming distance at 3 or higher. Such levels of FRRs are
very small, and acceptable to users. The latencies of the methods are also acceptable.

To find the Hamming distance between two 256-bit long streams usually takes less
than 10 clock cycles, or 10 ns for a 1 GHz processor. With the ternary PUFs that we
characterized, and a = 2, the sever needs to find the Hamming distance between Rej
and Chi, then the 24 Hamming distances between Chi-1 k and Chi, a total of 24
searches, or 250 ns for a 1 GHz processor. With @ = 3, the maximum number of
searches needed to iterate is 297, and 2.97 ps latency.

This protocol is also scaling well when the size of the lock-up table increases. For
example, look-up tables with 36-bit addresses can store 68G addresses, which is 65,000
larger than a look-up table bit 24-bit addresses. There are only 36 addresses with a
36

Hamming distance of 1 within a given response, and <)

> = 630 addresses with a

Hamming distance of 2.

4.4 Double Addressing with Two Ternary APGs

The same method as the one described above can be implemented with two different
ternary APGs, as shown in Fig. 9. One APG, in green in the figure, generates the
challenges Chj to be stored in the look-up table based on the passwords PW;.
The second APG, in red in the figure, generates the addresses Cddi in the look-up table
based on Userj @ PWj. To enhance security the two APGs can use different PUF
technologies. The first APG for Chj generation is less sensitive to CRP error rates, and
does not have to be based on Ternary PUFs. The control circuitry shown in Fig. 8 can
also be separated into two different circuits to increase the protection of the system.

Password Manager Combining Hashing Functions and Ternary PUFs 15

(" B=User)J@OPWj Data base | / ODEOEDC N\
A=PWij CddT: Cha UMDY SECONDRD e
Cdd2: Chb |

Cddi : Chj
CddN: Chw Hﬁ:ﬁ L 5:5::: -_:'1:':':'-"'

Cddi| | Chi = Control ...'.‘.:.....'..‘.:.i;:

h(B)
» h(A)

Fig. 9. Block diagram of a password manager with two ternary APG, driving two addressing
schemes.

Yz 08 SCCRUROOELCREE

\ Authentication

User)

)

4.5 Double Addressing with PUF Based on Ring Oscillators

PUF designed with component different than SRAM were studied, such as the ones
designed with gate delays and ring oscillators. The diagram of such password manager
is shown in Fig. 10. Pairs are formed to group the stream of bits, which are generated
from the message digest. Each pair generates a challenge (or response), in such a way
that a message digest of 512 bits can generate 256 CRPs. Ternary states can be
generated with ring oscillator PUFs. During challenge generation, a particular pair of
ring oscillators generates the state “0” or “1” when the difference between the numbers
of oscillation per milli-second of the two rings is large enough. When this difference is
below a given threshold, the pair generates a fuzzy state “X”. During the response
generation, all pairs are generating only “0”, or “1”.The CRP matching estimate is
based on the non-fuzzy pairs that were generated during challenge generation, while
the pairs with fuzzy state are ignored. This results in a reduction of the CRP error rates.

4.6 Entropy Enhancement

In the software implementation presented above, the randomness, and entropy was
increased with longer message digests. The protocols presented in Sects. 3 and 4 are
based on the conversion of message digest into addresses. The example given is the one
of an APG based on an array of 4,096 x 4096 cells. The first 12 bits are used to find
the X coordinate, and the next 12 bits are used to find the Y coordinate. The n-cells
located after that address are used to generate PUF challenges (or responses) that
consist of n-bits. Message digests contain long streams of bits, typically 512, so only 24

16 B. Cambou

[B=User)J@PWij Data base | /7 - w—y
A=PW;j Cdd: Cha il

Cdd2: Chb gl
Cddi’: Chj) 3 PUF2 F_
CddN: Chw L

1

Cddi| | Chi = Control | v SN

' Authentication

Server

MUX

\

y,

Fig. 10. Block diagram of a password manager with two PUFs based on ring oscillator driving
two addressing schemes.

bits out of these streams are used in the protocol. The opportunity to increase ran-
domness is to find multiple addresses in the APG from the message digests, and to
reduce the number of cells involved at each address. Assuming that the size of the
streams is kept at m, a total of f addresses in the APG are selected from each message
digest, and m cells are selected by address to generate the n-bit challenges (or
responses), with n = fm. For example if n = 512, and f = 16 (addresses selected from
the message digests), then m = 32 bits are generated at each address. The number of
bits of the message digest used for addressing in the protocol is now 16 x 24 = 384.
There are 2%* different 24-bit possible addresses, and entropy of 24 (Log2(224) = 24).
The number of possible ways to pick 16 addresses having 24 bits is (2°*)'®, an entropy
of 384.

5 Conclusion and Future Work

As part of the design of password managers, hash functions are effective to replace the
storage of the password into message digests. Hash functions can also protect the
address in look up tables where these message digests are stored. Such methods offer
reasonable protections against the exposure of the look up tables to malicious parties.
However, certain attacks, such as password guessing, are still effective against such
schemes, because the hash functions are usually known, and public. The use of
encrypted hashing functions is stronger, but can create a false sense of security when
the cryptographic keys are also lost to the hackers. The combination of hashing
functions with addressable PUF generators allows the replacement of the message

Password Manager Combining Hashing Functions and Ternary PUFs 17

digests of the passwords by challenge-response-pairs, which provide an additional layer
of security. Even if the hash functions are known, the PUFs, which can be unclonable,
random, and unique, mitigate attacks against lost look up tables. The task of malicious
entities is thereby much more challenging; in order to break the system they have to
steal the hardware containing the PUFs, or find a way to download a representation of
the PUFs. The suggested ternary PUF architecture handles the fuzzy states, which
reduces the challenge-response pair error rates, making the method more reliable, and
reduces latencies. The proposed matching algorithms are critical to protect the
addresses in look up tables using ternary PUFs, with low false rejection rates (FRR) at
low computing latencies. The implementation using ternary SRAM PUF is showing
FRR lower than the part per million, and latencies in the microsecond range. This
suggested additional protection can use a single PUF, two PUFs, or PUFs based on
different technologies. The hardware-software implementation that was developed, and
described in this paper, uses existing components, and is extremely low cost. This
method has the objective to complement other cryptographic protections, not to replace
them. For example, the use of multi-factor authentication, and the encryption of the
passwords with public key infrastructure (PKI) are recommended.

Moving forward the suggested algorithms should be further improved, and use
stronger PUFs beside SRAMs. The functionality of commercial password managers,
including password expiration and replacement, verification of their strength, firewall
protection, and others, will be incorporated, and tested in future prototypes. SRAM
PUFs are relatively easy to break, and the proposed password managers should be
designed with tamper resistant PUFs. Examples of stronger candidates include mem-
ristor and ReRAM based low power PUFs [51-53, 56, 57]. Finally, the development
boards used in this work should be replaced with application specific integrated circuits
(ASIC), which incorporate hardware protection against differential power analysis, and
other side channel attacks, and using a cryptoprocessor, to provide encryption of the
passwords with PKI, and hardware implementation of SHA-3.

Acknowledgments. The author is thanking the contribution of several graduate students at
Northern Arizona University, in particular Sareh Assiri, Christopher Philabaum, Duane Booher,
Vince Rodriguez, Ian Burke, and Mohammad Mohammadi.

References

1. Jeong, Y.S., Park, J.S., Park, J.H.: An efficient authentication system of smart device using
multi factors in mobile cloud service architecture. Int. J. Commun. Syst. 28(4), 629-674
(2014)

2. Saxena, N., Choi, B.J.: State of the art authentication, access control, and secure integration
in smart grid. Energies 8(10), 11883-11915 (2015)

3. Zhang, M., Zhang, J., Zhang, Y.: Remote three-factor authentication scheme based on Fuzzy
extractors. Secur. Commun. Netw. 8(4), 682-693 (2014)

4. Keane, J.: Security researcher dumps 427 million hacked Myspace passwords, July 2016.
https://www.digitaltrends.com/social-media/myspace-hack-password-dump/

5. Morgan, S.: 2017 Cybercrime Report, Cybercrime damages will cost the world $6 trillion
annually by 2021. Cybersecurity Ventures, Herjavec Group (2017)

https://www.digitaltrends.com/social-media/myspace-hack-password-dump/

18

10.
11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

B. Cambou

. Target: Data stolen from up to 70 million customers: USA Today. https://www.usatoday.

com/story/money/business/2014/01/10/target-customers-data-breach/4404467/

. Blocki, J., Harsha, B., Zhou, S.: On the economics of offline password cracking. In: IEEE

Symposium on Security and Privacy (SP) (2018)

. Lee, HW., Noh, M.J., Chol, HM., Feng, X.: Password system, method of generating

password, and method of checking password. Patent application US2009/0228977A1 (2009)

. Fitzgerald, J.: Systems and methods for providing a covert password manager. US patent

9,571,487 B2 (2017)

Harper, R.: STARTS password manager. Patent publication, US2005/0125699A1 (2005)
Mimlitsch, J.: User-administrated single sign-on with automatic password management for
WEB server authentication. Patent publication US2007/0226783A1 (2007)

Safriel, M.: Portable password manager. Patent publication US2004/0193925A1

Tsai, C.-S., Lee, C.-C., Hwang, M.-S.: Password authentication schemes: current status and
key issues. 1J Network Security (2006)

Zhang, Z., Yang, K., Hu, X., Wang, Y.: Practical anonymous password authentication and
TLS with anonymous client authentication. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pp. 1179-1191. ACM (2016)
Forler, C., List, E., Lucks, S., Wenzel, J.: Overview of the candidates for the password
hashing competition. In: Conference on Passwords, Springer (2014)

Tsai, J.-L.: Efficient multi-server authentication scheme based on one-way hash function
without verification table. Comput. Secur. 27(3—4), 115-121 (2008)

Janzen, W.S.: Iterated password hash systems and methods for preserving password entropy.
US patent 8,769,637 B2 (2014)

Pappu, R., Recht, B., Taylor, J., Gershenfield, N.: Physical one-way functions. Science 297
(5589), 2026-2030 (2002)

Jin, Y.: Introduction to hardware security. Electronics 4, 763-784 (2015). https://doi.org/10.
3390/electronics4040763

Gassend, B., et al.: Silicon physical randomness. In: Proceedings of the 9th ACM
Conference on Computer and Communications Security, CCS’2002, pp. 148-160 (2002)
Naccache, D., Frémanteau, P.: Unforgeable identification device, identification device reader
and method of identification. Patent US5434917, August 1992

Gao, Y., et al.: Emerging physical unclonable functions with nanotechnologies. IEEE.
https://doi.org/10.1109/access.2015.2503432

Delavor, M., et al.: PUF based solution for secure communication in advanced metering
infrastructure. ACR Publication (2014)

Herder, C., Yu, M.-D., Koushanfar, F., Devadas, S.: Physical unclonable functions and
applications: a tutorial. Proc. IEEE 102(8), 1126-1141 (2014)

Maes, R., Verbauwhede, I.: Physically unclonable functions: a study on the state of the art
and future research directions. In: Towards Hardware-Intrinsic Security (2010)

Wang, D., Zhang, Z., Wang, P., Yan, J., Huang, X.: Targeted online password guessing: an
underestimated threat. In: Proceedings of the ACM CCS, pp. 1242-1254 (2016)

Pass the Hash attack: Microsoft research as on 12 August 2015. http://www.microsoft.com/
PTH

Bonneau, J., Herley, C., van Oorschot, P., Stajano, F.: Passwords and the evolution of
imperfect authentication. Commun. ACM 58(7), 78-87 (2015)

Taniguchi, M., Shiozaki, M., Kubo, H., Fujino, T.: A stable key generation from PUF
responses with a fuzzy extractor for cryptographic authentications. In: 2013 IEEE 2nd
Global Conference on Consumer Electronics (GCCE), Tokyo (2013)

Price, N.E., Sherman, A.T.: How to generate repeatable keys using physical unclonable
functions, correcting PUF errors with iteratively broadening and prioritized search

https://www.usatoday.com/story/money/business/2014/01/10/target-customers-data-breach/4404467/
https://www.usatoday.com/story/money/business/2014/01/10/target-customers-data-breach/4404467/
http://dx.doi.org/10.3390/electronics4040763
http://dx.doi.org/10.3390/electronics4040763
http://dx.doi.org/10.1109/access.2015.2503432
http://www.microsoft.com/PTH
http://www.microsoft.com/PTH

31.

32.

33.

34.

35.

36.

37.
38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

Password Manager Combining Hashing Functions and Ternary PUFs 19

Boehm, H.M.: Error correction coding for physical unclonable functions. In: Austrochip,
Workshop in Microelectronics (2010)

Yu, M., Devadas, S.: Secure and robust error correction for physical unclonable functions.
IEEE Design Test Comput. Verifying Phys. Trustworthiness ICs Syst. 27, 48-65 (2010)
Kang, H., Hori, Y., Katashita, T., Hagiwara, M., Iwamura, K.: Cryptographie key generation
from PUF data using efficient fuzzy extractors. In: 16th International Conference on
Advanced Communication Technology, Pyeongchang (2014)

Becker, G.T., Wild, A., Giineysu, T.: Security analysis of index-based syndrome coding for
PUF-based key generation. In: 2015 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), Washington, DC (2015)

Hiller, M., Weiner, M., Rodrigues, L., Birkner, M., Sigl, G.: Breaking through fixed PUF
block limitations with differential sequence coding and convolutional codes. In: TrustED’13
(2013)

Paar, C., Pezl, J.: Understanding Cryptography - A Text Book for Students and Practitioners.
Springer, Berlin (2011)

Mel, H.X., Baker, D.: Cryptography Decrypted. Addison-Wesley, Boston (2001)

Pfleeger, C.P., et al.: Security in Computing, 5th edn. Prentice Hall, Upper Saddle River
(2015)

Croman, K., Decker, C., Eyal, 1., Gencer, A.E., Juels, A., Kosba, A., Miller, A.: On scaling
decentralized blockchains. In: Springer International Conference on Financial Cryptography
and Data Security, Berlin, Heidelberg (2016)

Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., Saxena, P.: A secure sharing
protocol for open blockchains. In: ACM SIGSAC Conference on Computer and
Communication Security (2016)

Eyal, 1., Gencer, A.E., Sirer, E.G., Renesse, R.V.: Bitcoin-NG: a scalable blockchain
protocol. In: NSDI (2016)

Dorri, A., Kanhere, S.S., Jurdak, R.: Blockchain in internet of things: challenges and
solutions. arXiv preprint arXiv: 1608.05187 (2016)

Gervais, A., Karame, G.O., Wiist, K., Glykantzis, V., Ritzdorf, H., Capkun, S.: On the
security and performance of proof of work blockchains. In: ACM SIGSAC Conference on
Computer and Communications Security (2016)

Zheng, Z., Xie, S., Dai, H.-N., Wang, H.: Blockchain challenges and opportunities: a survey.
Int. J. Web Grid Serv. 1-25 (2016)

Cambou, B.: Addressable PUF generators for database-free password management system.
In: CryptArchi (2018)

Holcomb, D.E., Burleson, W.P., Fu, K.: Power-up SRAM state as an identifying fingerprint
and source of TRN. IEEE Trans. Comput. 57(11), 1198-1210 (2008)

Maes, R., Tuyls, P., Verbauwhede, I.: A soft decision helper data algorithm for SRAM
PUFs. In: 2009 IEEE International Symposium on Information Theory (2009)
Christensen, T.A., Sheets II, J.E.: Implementing PUF utilizing EDRAM memory cell
capacitance variation. Patent No.: US 8,300,450 B2, 30 October 2012

Prabhu, P., Akel, A., Grupp, L.M., Yu, W.-K.S., Suh, G.E., Kan, E., Swanson, S.: Extracting
device fingerprints from flash memory by exploiting physical variations. In: 4th International
Conference on Trust and Trustworthy Computing, June 2011

Plusquellic, J., et al.: Systems and methods for generating PUF’s from non-volatile cells.
WO020151056887A1 (2015)

Chen, A.: Comprehensive assessment of RRAM-based PUF for hardware security
applications. IEEE (2015). 978-1-4673-9894-7/15/IEDM

20

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

B. Cambou

Cambou, B., Afghah, F., Sonderegger, D., Taggart, J., Barnaby, H., Kozicki, M.: Ag
conductive bridge RAMs for physical unclonable functions. In: 2017 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), McLean (2017)

Korenda, A., Afghah, F., Cambou, B., A secret key generation scheme for internet of things
using ternary-states ReRAM-based physical unclonable functions. In: Submitted to
International Wireless Communications and Mobile Computing Conference IWCMC 2018)
Zhu, X., Millendorf, S., Guo, X., Jacobson, D.M., Lee, K., Kang, S.H., Nowak, M.M., Fazla,
D.: PUFs based on resistivity of MRAM magnetic tunnel junctions. Patents US
2015/0071432 Al, March 2015

Vatajelu, E.I.,, Di Natale, G., Barbareschi, M., Torres, L., Indaco, M., Prinetto, P.: STT-
MRAM-based PUF architecture exploiting magnetic tunnel junction fabrication-induced
variability. ACM Trans. 13(1), 5 (2015)

Cambou, B., Orlowski, M.: Design of PUFs with ReRAM and ternary states. CISR 2016,
April 2016

Cambou, B., Afghah, F.: Physically unclonable functions with multi-states and machine
learning. In: 14th International Workshop on Cryptographic Architectures Embedded in
Logic Devices (CryptArchi), France (2016)

Cambou, B., Telesca, D.: Ternary computing to strengthen information assurance,
development of ternary state based public key exchange. In: Computing Conference, IEEE,
London, July 2018

Cambou, B., Flikkema, P., Palmer, J., Telesca, D., Philabaum, C.: Can ternary computing
improve information assurance? Cryptography, MDPI, February 2018

Cambou, B.: Physically unlonable function generating systems and related methods. US
patent 9,985,791 (2018)

Cambou, B.: Encoding ternary data for PUF environment. US patent 10,050,796 (2018)

