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Abstract
The largest temporary, in-channel sand storage locations in the Green River in the

Canyon of Lodore are the ponded backwaters found upstream from debris fan constrictions in the
upstream, low-gradient segment of the canyon. Mean channel depth in the middle, high-gradient
segment of the canyon and at sites downstream from constrictions varies little, indicating that

these areas are less dynamic short-term sand storage reservoirs. Eddy sandbars are built to their
largest volumes and highest elevations by large floods, but the deposits are eroded by lower
discharges and volumes return to pre-flood values in less than 2-years. Additionally, the 9 years
of channel cross-section data collected at study reaches in Dinosaur National Monument indicate

that there are no apparent long-term changes in sand storage within the study reaches.



Introduction

Operation of Flaming Gorge Dam has altered the hydrology of downstream reaches of
the Green River. The alteration has been greatest in the 104-km section of the river between the
dam and Echo Park, where the relatively unregulated Yampa River joins the Green River. Flow
regulation has greatly reduced the magnitude and frequency of large floods in the Canyon of
Lodore, reducing the 2-year flood by 57 %(Grams and Schmidt, 2002). The reduction of the
large discharges that are largely responsible for channel form has led to channel narrowing and
aggradation through the accretion of inset floodplains (Grams and Schmidt, 2002).

The invasion of non-native tamarisk occurred concurrently with the reduction of large
floods. Tamarisk have stabilized the newly formed deposits by adding binding root strength,
preventing floods from eroding these deposits. Channel narrowing and stabilization of these
deposits has led to reduced habitat complexity through the reduction of geomorphic activity.

The data presented here are part of an ongoing effort to monitor flow, sediment transport,
and channel form of the Green River in Dinosaur National Monument (Grams, 1997; Grams et
al., 1999; Grams and Schmidt, 1999; 2002; Martin et al., 1998). This report describes
measurements of channel form made in 2003 in four study reaches in the Canyon of Lodore that
are the sites of an ongoing experiment concerning the geomorphic effects of tamarisk. The
purpose of this report is to summarize field activities related to cross-section monitoring during
2003 and to present selected data collected during that time, and during prior surveys, in order to

examine trends in channel change that have occurred during the past 9 years.



Study Area

The Canyon of Lodore begins 74 kilometers downstream from Flaming Gorge Dam and
ends 30 km further downstream at the confluence of the Green and Yampa Rivers in Echo Park
(Fig. 1). The geomorphology of the Green River in Dinosaur National Monument consists of a
series of repeating fan-eddy complexes (Grams and Schmidt, 1999). The fan-eddy complex
consists of debris fan constrictions that create downstream areas of recirculating flow and eddy
sandbars and upstream areas of ponded backwater (Schmidt and Rubin, 1995). Important sand
storage locations throughout the canyon include eddy bars and the channel bed in areas within
ponded backwaters. Each of the four study reaches with benchmarked cross-sections spans the
length of a fan eddy-complex and includes cross-sections through the ponded backwaters
upstream from debris fans and cross-sections that cross-eddy sandbars downstream from fans.

Grams and Schmidt (1999) divided the Canyon of Lodore into three distinct segments: a
low-gradient upstream segment, a high-gradient middle segment with abundant debris fans, and a
low-gradient lower segment. The adjacent Wade and Curtis and Winnies reaches are located in
the upper low-gradient segment of the canyon, near river miles 241 and 240, respectively. The
paired Mile 233 and Triplet Falls reaches are located further downstream in the middle, high

gradient segment near river miles 233 and 232, respectively.

Methods
The eight cross-sections in each study reach were resurveyed between August 18 and 21,
2003. Data collection consisted of topographic surveys of the ground surface and the wadeable

portions of the channel and bathymetric surveys of the channel bed conducted with a fathometer
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Figure 1. Study area map.




mounted on a boat. These two data sets were combined by surveying bed elevations common to
both methods.

Topographic data at all cross-sections were collected in July 2001 but extend as far back
as June 1994 for some cross-sections (Fig. 2) (Grams, 1997). Cross-section data for all survey
dates were used to calculate metrics of cross-section form including: area, wetted perimeter,
hydraulic radius, mean depth, maximum depth, and top width. To be consistent, all metrics were
calculated with reference to a common vertical datum: in this case, the elevation of the water
surface measured in August 2003 when discharge was approximately 800 sl

In this report, we present data on one metric of channel condition, mean channel depth.
Time series analysis of mean channel depth was aggregated based on the location of each study
reach in terms of the three river segments of Grams and Schmidt (1999) described above, and the
geomorphic setting of each cross-section. Based on these criteria, cross-sections were grouped
as those in the low-gradient upstream segment of the canyon, those in the high-gradient middle
segment of the canyon, those located in ponded backwaters upstream from constrictions, and
those located downstream from constrictions. Channel width changes little from one survey to
the next; therefore variations in mean channel depth represent changes in the elevation of the
channel bed. Aggradation or degradation of the bed occurs due to the addition or removal of
sand, thus, changes in mean channel depth represent changes in the volume of sand stored on the

bed of the river.

In addition to channel cross-section metrics, changes in sand volume described at a cross-
section were calculated for those cross-sections that cross eddy sandbar or channel-margin

deposits. Sand area was calculated for two zones, sand area between the 800 ft>s™! and 4400
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f’s"! stage and sand area above the 4400 ft3s! stage. The methods used to calculate sand area
are shown in Figure 3. The area of sand in each cross-section was normalized to the lowest

value, so that comparisons could be made among cross-sections.

Results

Cross-section change

Examples of geomorphic change typical of the two distinct depositional environments,
eddy sandbars and channel-margin deposits, are shown in Figures 4 and 5 using examples from
Cross-Section Four in the Winnies Reach. Change representative of those measured at eddy bars
is shown in Figure 4. The volume of the bar progressively increased during the summer of 1999.
The elevation of the bar rose by 0.7 m between May 19 and June 15 during discharges associated
with the June 1999 flood release of 10,900 ft°s'. The volume of the bar continued to increase
following the peak discharge, while the bar was inundated, with a maximum elevation of 1.1 m
greater than the pre-flood elevation measured on June 27 and August 1, 1999. As elevation of
the bar increased, the elevation of the eddy-return channel at the channel margin deepened (Fig.
4). Survey data show that the volume of the bar decreased in following years of lower flows and
that the eddy-return channel filled, similar to patterns measured in Grand Canyon (Fig. 4). The
elevation of the bar in August 2002 was similar to values recorded in May 1999 before the flood
release, and the elevation of the bar decreased by an additional 0.8 m between August 2002 and
August 2003 (Fig. 4). Thus, substantial bar reworking can occur during years of low floods; the
primary changes are the erosion of high flood bars.

Geomorphic change of a typical channel-margin deposit is described for the site on the

river-left of Cross-Section Four in the Winnies Reach (Fig. 5). This cross-section was first
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Figure 3. A. The cross-sectional area of sand deposits between the 800 ft’s™ and 4,400
35! water surfaces were calculated by creating a polygon of the sand in this zone and
calculating its area. The lower surface of the polygon is the 800 ft’s™" stage, the
shoreward limit of the polygon was chosen to be the maximum shoreward extent of the
800 f3s " water surface, the upper and riverward surface of the polygon is the surveyed
topography, or the 4,400 s stage if the deposit extended above that surface. B. The
cross-sectional area of sand deposits above the 4,400 ft’s™ water surfaces were
calculated similarly, by creating a polygon and calculating the area. The lower
bounding surface of the polygon is the 4400 ft’s™ water surface, the shoreward
bounding surface is the location of the cross-section benchmark, and the top and
riverward bounds of the polygon are the surveyed topography. Sand areas for each
cross-section were normalized to the lowest value measured at each site.
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surveyed in May 1999 prior to the 10,900 ft3s™! that occurred in June 1999. The channel-margin
deposits scoured during the June 1999 flood, and the bank retreated approximately 3.8 m.
Subsequent surveys show the channel has narrowed since the June 1999 flood, and, in August
200,3 the left side of the cﬁannel was approximately 1.5 m narrower than it was following the
1999 flood.

Time series analysis of change in mean channel depth based on the location of the study
reach indicates that there is greater variation in mean depth at those cross-sections in the upper
low-gradient segment of the canyon than those in the middle, high-gradient segment of the
canyon (Figs. 6 and 7). This suggests that the upper segment of the canyon is a temporary
storage site for sand. The mean depth of individual cross-sections in the upper segment of the
canyon commonly varies by more than 0.5 m, and the maximum change for a single cross-
section is greater than 3 m (Fig. 6). In contrast, in the middle segment of the canyon mean
channel depth has remained fairly constant. In general, the mean depth of individual cross-
sections varies by less than 0.5 m and the maximum fluctuation for a single cross-section is less
than 1 m (Fig. 7).

Comparison of mean channel depth based upon geomorphic setting indicates that sites
located in ponded backwaters exhibit more change, and are thus more dynamic storage locations
than those located downstream from constrictions (Figs. 8 and 9). At cross-sections located in
ponded backwaters that include surveys made prior to July 2001, mean depth fluctuations were
commonly greater than 1 m, whereas fluctuations greater than 1 m were rare for those cross-

sections located downstream from constrictions.
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For all cross-sections, the most dramatic changes in mean depth occur during and
following floods, such as those that occurred in 1997 and 1999. The direction of the change in
mean depth was variable, occurring as scour in some cases and aggradation in others, but several

channel cross-sections reached their deepest recorded value following the June 1999 flood

release and have subsequently aggraded (Figs. 6 and 7).

Sand Volume Change at Cross-Sections

Time series analysis of the volume of sand between the 800 and 4,400 fi3s! stages shows
that the volume of most deposits increases dramatically during floods, decreases sharply
immediately following floods, then slowly declines during intervening periods of low flow (Fig.

10). We represent volume change as changes in cross-section area of sand above a stage at each
cross-section. The greatest volume of sand deposits were measured during the peak discharges
associated with the June 1999 flood (Fig. 10). Following floods, the sand volume typically
declined, reaching values similar to the pre-flood volume (Fig. 10). Some eddy sand bars, such

as the bar at Mile 233 Cross-Section One, exhibit dynamic scour and fill but undergo only small
fluctuations in sand volume.

Times series analysis of sand volume above 4,400 ft’s’! shows a similar trend to the 800
t0 4,400 ft’s! data. Sand volumes tend to reach peak values during flood discharges and
diminish as they are eroded by lower magnitude discharges, and, over time, approach pre-flood

levels (Fig. 11). Data collected at Cross-Section Three in the Winnies Reach illustrates this

observation (Fig. 12).
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Summary
Monitoring of channel cross-section form over the last nine years has revealed the
following trends:
1) There are no apparent long-term trends in sand storage at monitoring sites in the Canyon of
Lodore, i.e. the channel is not appreciably aggrading or degrading over time.
2) The largest apparent temporary in-channel sand storage sites are at sites located in ponded
backwaters, particularly those located in the upper, low-gradient segment of the canyon.
3) The largest sandbars are present during or immediately following large floods. These bars are

deposited quickly and are subsequently eroded by lower-magnitude discharges.
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